Communications for Statistical Applications and Methods
/
제19권6호
/
pp.761-770
/
2012
We frequently encounter outcomes of count that have extra variation. This paper considers several alternative models for overdispersed count responses such as a quasi-Poisson model, zero-inflated Poisson model and a negative binomial model with a special focus on a generalized linear mixed model. We also explain various goodness-of-fit criteria by discussing their appropriateness of applicability and cautions on misuses according to the patterns of response categories. The overdispersion models for counts data have been explained through two examples with different response patterns.
Communications for Statistical Applications and Methods
/
제30권3호
/
pp.291-309
/
2023
Longitudinal count data has been widely collected in biomedical research, public health, and clinical trials. These repeated measurements over time on the same subjects need to account for an appropriate dependency. The Poisson regression model is the first choice to model the expected count of interest, however, this may not be an appropriate when data exhibit over-dispersion or under-dispersion. Recently, Conway-Maxwell-Poisson (CMP) distribution is popularly used as the distribution offers a flexibility to capture a wide range of dispersion in the data. In this article, we propose a Bayesian CMP regression model to accommodate over and under-dispersion in modeling longitudinal count data. Specifically, we develop a regression model with random intercept and slope to capture subject heterogeneity and estimate covariate effects to be different across subjects. We implement a Bayesian computation via Hamiltonian MCMC (HMCMC) algorithm for posterior sampling. We then compute Bayesian model assessment measures for model comparison. Simulation studies are conducted to assess the accuracy and effectiveness of our methodology. The usefulness of the proposed methodology is demonstrated by a well-known example of epilepsy data.
시간의 흐름에 따라 관측되는 경시적(longitudinal) 자료의 경우, 경시적 자료와 생존(survival) 자료가 종종 동시에 수집된다. 이 때 경시적 자료에서 발생하는 결측이 생존자료와의 연관성으로 인해 발생한 무시할 수 없는 결측(non-ignorable missing)이라면, 경시적 자료분석 방법만으로는 두 자료 간의 연관성을 고려하지 않아 독립변수에 대한 효과는 편향된 결과를 얻게 된다. 이러한 문제를 해결하기 위해서 결측의 원인이 생존시간과 연관되어 있으므로 생존모형을 고려하여 불편추정량을 얻기 위해 경시적 자료와 생존자료의 결합모형에 대한 연구가 이루어져 왔다. 본 논문은 경시적 자료의 형태가 영이 많이 존재하는 영과잉 가산자료(zero-inflated count data)와 생존자료의 결합모형을 연구하였다. 경시적 영과잉 가산자료와 생존자료는 각각 허들모형(hurdle model)과 비례위험모형(proportional hazards model)의 부 모형을 적용하였고, 두 부 모형들의 변량효과가 다변량 정규분포를 따른다는 가정을 통하여 결합하였다. 모수의 최우추정법으로 EM 알고리즘을 활용하였고, 추정된 표준오차를 계산하기 위해 프로파일 우도(profile likelihood)를 이용하였다. 최종적으로 모의실험을 통해 두 부 모형의 변량효과 간 상관관계가 존재하는 경우 결합모형이 개별적 모형보다 편의와 포함확률(coverage probability)의 측면에서 더 우수함을 보였다.
Background: Sampling a healthy reference population to generate reference intervals (RIs) for complete blood count (CBC) parameters is not common for pediatric and geriatric ages. We established age- and sex-specific RIs for CBC parameters across pediatric, adult, and geriatric ages using secondary data, evaluating patterns of changes in CBC parameters. Methods: The reference population comprised 804,623 health examinees (66,611 aged 3-17 years; 564,280 aged 18-59 years; 173,732 aged 60-99 years), and, we excluded 22,766 examinees after outlier testing. The CBC parameters (red blood cell [RBC], white blood cell [WBC], and platelet parameters) from 781,857 examinees were studied. We determined statistically significant partitions of age and sex, and calculated RIs according to the CLSI C28-A3 guidelines. Results: RBC parameters increased with age until adulthood and decreased with age in males, but increased before puberty and then decreased with age in females. WBC and platelet counts were the highest in early childhood and decreased with age. Sex differences in each age group were noted: WBC count was higher in males than in females during adulthood, but platelet count was higher in females than in males from puberty onwards (P <0.001). Neutrophil count was the lowest in early childhood and increased with age. Lymphocyte count decreased with age after peaking in early childhood. Eosinophil count was the highest in childhood and higher in males than in females. Monocyte count was higher in males than in females (P <0.001). Conclusions: We provide comprehensive age- and sex-specific RIs for CBC parameters, which show dynamic changes with both age and sex.
0이 과도하게 많이 나타나는 자료는 여러 다양한 분야에서 흔히 볼 수 있다. 이러한 자료들을 분석할 때 대표적으로 영과잉 포아송 모형이 사용된다. 특히 반응변수들 사이에 상관관계가 존재할 때에는 랜덤효과를 영과잉 포아송 모형에 도입해서 분석해야 한다. 이러한 모형은 주로 빈도론자들의 접근방법으로 분석되어왔는데, 최근에는 베이지안 기법을 사용한 분석도 다양하게 발전되어 왔다. 본 논문에서는 반응변수들 사이에 상관관계가 존재하는 경우 랜덤효과가 포함된 영과잉 포아송 회귀모형을 베이지안 추론 방법을 토대로 제안하였다. 이 모형의 적합성을 판단하기 위해 모의 실험을 통해 랜덤효과를 고려하지 않은 모형과 비교 분석하였다. 또한, 실제 지역사회 건강조사 흡연 자료에 직접 응용하여 그 결과를 살펴보았다.
개인교통수단의 선호로 인한 자가용 승용차의 급증은 서울시의 교통혼잡을 가중시키는 주요한 요인이 되고 있다. 이러한 서울시의 교통혼잡을 완화하기 위해서는 대중교통 중심의 교통체계가 구축되어야 하며 승용차 이용자를 대중교통수단으로 유인할 수 있는 대중교통 활성화정책이 필요하다. 이러한 인식하에 버스를 이용하는 통근 및 통학목적 통행자의 버스이용횟수에 대한 개별행태모형을 통하여 버스 이용에 영향을 미치는 요인을 파악함으로써 승용차 이용자를 대중교통수단으로 유인할 수 있는 정책적인 시사점을 도출하고자 하였다. 본 연구의 목적은 일주일간 버스이용횟수 추정에 적합한 가산자료모형의 적용이다. 국내에서는 가산자료모형을 이용한 연구가 많지 않은 실정이며, 또한 모형의 설정시 과산포(overdispersion)에 대한 검정을 통하여 자료에 적합한 모형을 설정하는 것이 중요함에도 불구하고 적절한 검정없이 일반적으로 사용되고 있는 포와송 회귀모형을 주로 사용하여 왔다. 그러나 본 연구에서는 가산자료모형을 선정하기 전에 과산포에 대한 통계적인 검정을 시행한 결과 음이항 회귀모형이 본 연구의 자료에 적합한 것으로 판정되었으며, 모형설정의 중요성을 살펴보기 위하여 음이항 회귀모형을 이용하여 추정한 결과와 포와송 회귀모형을 이용하여 추정한 결과를 비교하여 보았다.
단일 분자에서 발생한 발광의 세기 변화를 분석하는 문제는 단분자 분광학에서 반드시 필요하다. 본 연구에서는 카드뮴셀레나이드/황화아연의 중심-껍질 구조를 갖는 양자점에 대한 단분자 분광학 데이터에 대해 Poisson count data로서 베이지안 접근으로 모수에 대한 공액 감마분포와 변화점 개수에 대한 절단포아송 분포로 사전분포를 주고 다중변화점을 추정하였다.
Journal of the Korean Data and Information Science Society
/
제28권4호
/
pp.927-936
/
2017
To analyze longitudinal count data, Poisson linear mixed models are commonly used. In the models the random effects covariance matrix explains both within-subject variation and serial correlation of repeated count outcomes. When the random effects covariance matrix is assumed to be misspecified, the estimates of covariates effects can be biased. Therefore, we propose reasonable and flexible structures of the covariance matrix using autoregressive and moving average Cholesky decomposition (ARMACD). The ARMACD factors the covariance matrix into generalized autoregressive parameters (GARPs), generalized moving average parameters (GMAPs) and innovation variances (IVs). Positive IVs guarantee the positive-definiteness of the covariance matrix. In this paper, we use the ARMACD to model the random effects covariance matrix in Poisson loglinear mixed models. We analyze epileptic seizure data using our proposed model.
Communications for Statistical Applications and Methods
/
제25권1호
/
pp.61-70
/
2018
Modeling of the random effects covariance matrix in generalized linear mixed models (GLMMs) is an issue in analysis of longitudinal categorical data because the covariance matrix can be high-dimensional and its estimate must satisfy positive-definiteness. To satisfy these constraints, we consider the autoregressive and moving average Cholesky decomposition (ARMACD) to model the covariance matrix. The ARMACD creates a more flexible decomposition of the covariance matrix that provides generalized autoregressive parameters, generalized moving average parameters, and innovation variances. In this paper, we analyze longitudinal count data with overdispersion using GLMMs. We propose negative binomial loglinear mixed models to analyze longitudinal count data and we also present modeling of the random effects covariance matrix using the ARMACD. Epilepsy data are analyzed using our proposed model.
데이터에 내재되어 있는 특이 패턴을 찾고자 데이터 분석을 할 때에 보통 다차원적인 데이터 집계를 하는데, 이때에 표준 SQL 쿼리를 사용해도 좋지만 쿼리가 아주 복잡해진다는 단점이 생기게 된다. 쿼리가 복잡해지면 표준 테이블을 여러 번 참조해야 되고 결과적으로 쿼리의 성능이 저하된다는 뜻이다. OLAP 쿼리는 복잡한 것이 대다수이기 때문에 SQL 쿼리를 대신할 새로운 집계용 연산자인 데이터 큐브를 간단히 불러 큐브를 만들 필요가 생기는 것이다. 집계를 하고, 부분 합을 구하는 것과 같은 OLAP 업무를 지원해 주는 것이 데이터 큐브이다. 이러한 데이터 큐브를 작성하는데 관련된 집계함수에는 여러 가지가 있는데, 이를 분배적 함수, 대수적 함수 그리고 전체관적 함수의 3가지로 분류할 수 있다. 이 중, SUM, COUNT, MAX, MIN과 같은 분배적 함수는 데이터 큐브를 작성하는 데에 직접사용 할 수 있고, AVG와 같은 대수적 함수는 매개함수를 활용하면 사용가능 하다고 알려져 있다. 즉, AVG 자체는 분배적 함수가 아니지만, (SUM, COUNT)와 같은 매개함수로 분배적 함수가되기 때문에 매개함수를 이용하여 구하면 된다는 뜻이다. 그러나 본 연구에서는 (SUM, COUNT)와 같은 매개함수를 통해 AVG를 구하는 것이 OLAP 큐브 작성에 적용시킬 수 없다는 사실을 확인했으며, 결과적으로 이 매개함수를 활용하면 잘못된 결론에 다다르고 그릇된 의사결정을 하게 된다는 사실을 확인하게 되었다. 따라서 본 연구에서는 집계함수 AVG를 OLAP 큐브에 적용시켰을 때의 여러 문제점을 밝혀내고 또한 이들 문제점을 해결할 방안을 찾고자 하는 데에 목적을 두고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.