• Title/Summary/Keyword: cortical screw

Search Result 79, Processing Time 0.02 seconds

Three Dimensional Study of Miniscrew about Installation Area and Angle (미니스크류 식립 각도 및 부위에 대한 3차원적 연구)

  • Jo, Hee-Sang;Lee, Jin-Woo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.2
    • /
    • pp.203-211
    • /
    • 2008
  • Minimizing damage to anatomical structure is a prerequisite for skeletal anchorage system to install a miniscrew. This research has focused on evaluating the stability and safety of installation in the maxillary molar buccal area, in which most miniscrews are installed clinically and initial fixation is weak. CT (computerized tomography)images were taken for surveying the possibility of damaging to adjucent teeth in accordance with installation angle. If we install a mini-screw($1.2{\times}6.0mm$) in the maxillary molar buccal area, it would be located generally in the 5~8mm upper of CEJ and 3~5mm inner of the cortical bone surface. We has measured the space between roots And comparison has been made for gender and the space between roots in accordance with the 3 different angles of installation(30 degree, 40 degree, 60 degree) in 3 categories. Category 1 : between 1st molar and 2nd molar Category 2 : between 1st molar and 2nd premolar Category 3 : between 1st premolar and 2nd premolar The result are as follow; 1. The space for category 1 was significantly small. 2. For the installation angle, it was safer to install with steeper angle in category 1 and category 2, but not in category 3. According to these results, the installation a miniscrew in category 2, 3 is safer than in category 1. And it is safer to install with steeper angle in category 1 and category 2.

Factors influencing primary stability of miniplate anchorage: a three-dimensional finite element analysis (미니플레이트의 골내 고정원 적용 시 초기 안정성에 영향을 주는 요인에 대한 3차원 유한요소법적 연구)

  • Lee, Nam-Ki;Choi, Dong-Soon;Jang, In-San;Cha, Bong-Kuen
    • The korean journal of orthodontics
    • /
    • v.38 no.5
    • /
    • pp.304-313
    • /
    • 2008
  • Objective: The purpose of this study was to evaluate the stress distribution in bone and displacement distribution of the miniscrew according to the length and number of the miniscrews used for the fixation of miniplate, and the direction of orthodontic force. Methods: Four types of finite element models were designed to show various lengths (6 mm, 4 mm) and number (3, 2) of 2 mm diameter miniscrew used for the fixation of six holes for a curvilinear miniplate. A traction force of 4 N was applied at $0^{\circ}$, $30^{\circ}$, $60^{\circ}$ and $90^{\circ}$ to an imaginary axis connecting the two most distal unfixed holes of the miniplate. Results: The smaller the number of the miniscrew and the shorter the length of the miniscrew, the more the maximum von Mises stress in the bone and maximum displacement of the miniscrew increased. Most von Mises stress in the bone was absorbed in the cortical portion rather than in the cancellous portion. The more the angle of the applied force to the imaginary axis increased, the more the maximum von Mises stress in the bone and maximum displacement of the miniscrew increased. The maximum von Mises stress in the bone and maximum displacement of the miniscrew were measured around the most distal screw-fixed area. Condusions: The results suggest that the miniplate system should be positioned in the rigid cortical bone with 3 miniscrews of 2 mm diameter and 6 mm length, and its imaginary axis placed as parallel as possible to the direction of orthodontic force to obtain good primary stability.

Implant stability evaluation according to the bone condition, fixture diameter and shape in the osseointegration simulated resin model (골유착 재현 레진 모델에서 골 상태 및 임플란트 형태에 따른 임플란트 안정성에 관한 연구)

  • Kwon, Taek-Ka;Yeo, In-Sung;Kim, Sung-Hun;Han, Jung-Suk;Lee, Jai-Bong;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.2
    • /
    • pp.128-137
    • /
    • 2011
  • Purpose: Resonance frequency analysis, Periotest, and removal torque (RT) test were known as the methods to assess implant stability. The results of these methods are affected by the bone condition, implant diameter and shape. The purpose of this study is to access the meaning and the correlationship of the resonance frequency analysis, Periotest and RT test in osseointegration simulated acrylic resin when the engaged bone thickness and peri-implant bone defect are changed. Materials and methods: To simulate osseointegration, the fixture was fixed to an aluminum mold with a screw. Acrylic resin powder and liquid were poured into the mold for polymerization. The engaged resin thickness with implant was controlled. Simulated cortical bone thicknesses were 1, 3, 5 and 10 mm. Additional 1, 3 and 5 mm peri-implant bone defects were simulated. Three types of implants were used; 4 mm diameter implants of straight shape, 4 mm diameter implants of tapered shape and 5 mm diameter implants of tapered shape. Five fixtures per each type were tested in respective bone condition. Resonance frequency analysis and Periotest were evaluated in all bone conditions. Peak removal torque was measured at simulated cortical bone thicknesses of 1 and 3 mm. The statistical analysis was performed with the Kruskal-Wallis test, Mann-Whitney U test, and Spearman test using a 95% level of confidence. Results: With increasing engaged bone depth, the Implant Stability Quotient (ISQ) values increased and the Periotest values (PTVs) decreased (P<.001, P<.001). With increasing peri-implant bone defect, ISQ values decreased and PTVs increased (P<.001). When the diameter of implant increased, ISQ values increased and Periotest values (PTV) decreased (P<.001). There was a strong correlation between ISQ values and PTVs (r = -0.99, P<.001). Furthermore, the peak removal torque values had weak correlations with both ISQ values and PTVs (r = 0.52, P<.001 ; r = -0.52, P<.001). Conclusion: This study confirmed favorable implant stability with increasing engaged bone depth and implant diameter and decreasing peri-implant bone defect. ISQ values and PTVs showed strong correlation with each other and not with the peak removal torque values.

Complications of PCL Reconstruction using Tibial Inlay Technique (경골 Inlay 방법을 이용한 후방 십자 인대 재건술의 합병증)

  • Kim Myung-Ho;Park Hee-Gon;Yoo Moon-Jib;Byun Woo-Sup;Shim Shang-Ho
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.3 no.2
    • /
    • pp.128-133
    • /
    • 2004
  • Purpose: This study was planned to evaluate complications? of posterior cruciate ligament (PCL) reconstruction with tibial inlay technique using autogenous bone-patellar tendon-bone graft. Materials and Methods: From September 1994 to January 2004, we analyzed surgical complications in fifty-seven patients with fifty-eight cases who underwent PCL reconstruction. Fifty of them were male and seven female. The mean age of the patients was 35(15$\~$73). Twenty eight cases of injury were isolated PCL, while thirty cases had associated injury of knee. The causes of injury were thirty-nine cases of traffic accident, seven sport injuries, seven fall down injuries, and five of others. The follow-up study was done at 4 weeks, 3 months,6 months and 1 year after surgery. KT-2000 arthrometer and posterior stress X-ray were used to examine the stability of the knee joint and the Lysholm Knee Score and a variety of clinical complications were evaluated. Results: Although the mean score of the preoperative Lysholm Knee Score was 43.2, the postoperative score was increased to 87.9. The preoperative mean value of knee stability using KT-2000 arthrometer was 8.75 mm(6.2$\~$14.3 mm) but the postoperative mean was 3.41 mm(2.1$\~$10.6 mm). The intraoperative complications were: one case of popliteal artery injury with compartment syndrome, one case of patellar fracture, two cases of 20$^{\circ}$ flexion loss, and two cases of anterior cortical penetration of the screw through proximal tibia during screw fixation. The postoperative complications were: eleven cases of knee instability, one case of patellar fracture, five cases of extension loss, thirteen cases of flexion loss, twenty-one cases of around knee pain and eight cases of kneeling pain. Conclusion: After PCL reconstruction with tibial inlay technique using autogenous bone-patella tendon-bone graft, complications were observed in this study. Careful attention during and after the operation, as well as rehabilitation must be required.

  • PDF

A three-dimensional finite-element analysis of influence of splinting in mandibular posterior implants (스프린팅이 하악 구치부 임플랜트 보철물의 응력분산에 미치는 영향에 관한 삼차원 유한요소분석 연구)

  • Baik, Sang-Hyun;Jang, Ik-Tae;Kim, Sung-Kyun;Koak, Jai-Young;Heo, Seong-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.2
    • /
    • pp.157-168
    • /
    • 2008
  • Statement of problem: Over the past two decades, implant supported fixed prosthesis have been widely used. However, there are few studies conducted systematically and intensively on the splinting effect of implant systems in mandible. Purpose: The purpose of this study was to investigate the changes in stress distributions in the mandibular implants with splinting or non-splinting crowns by performing finite element analysis. Materials and methods: Cortical and cancellous bone were modeled as homogeneous, transversely isotropic, linearly elastic. Perfect bonding was assumed at all interfaces. Implant models were classified as follows. Group 1: $Br{{\aa}}nemark$ length 8.5mm 13mm splinting type Group 2: $Br{{\aa}}nemark$ length 8.5mm 13mm Non-splinting type Group 3: ITI length 8.5mm 13mm splinting type Group 4: ITI length 8.5mm 13mm Non-splinting type An load of 100N was applied vertically and horizontally. Stress levels were calculated using von Mises stresses values. Results: 1. The stress distribution and maximum von Mises stress of two-length implants (8.5mm, 13mm) was similar. 2. The stress of vertical load concentrated on mesial side of implant while the stress of horizontal load was distributed on both side of implant. 3. Stress of internal connection type was spreading through abutment screw but the stress of external connection type was concentrated on cortical bone level. 4. Degree of stress reduction was higher in the external connection type than in the internal connection type.

EFFECT OF NUMBER OF IMPLANTS AND CANTILEVER DESIGN ON STRESS DISTRIBUTION IN THREE-UNIT FIXED PARTIAL DENTURES: A THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS

  • Park, Ji-Hyun;Kim, Sung-Hun;Han, Jung-Suk;Lee, Jai-Bong;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.3
    • /
    • pp.290-297
    • /
    • 2008
  • STATEMENT OF PROBLEM: Implant-supported fixed cantilever prostheses are influenced by various biomechanical factors. The information that shows the effect of implant number and position of cantilever on stress in the supporting bone is limited. PURPOSE: The purpose of this study was to investigate the effect of implant number variation and the effect of 2 different cantilever types on stress distribution in the supporting bone, using 3-dimensional finite element analysis. MATERIAL AND METHODS: A 3-D FE model of a mandibular section of bone with a missing second premolar, first molar, and second molar was developed. $4.1{\times}10$ mm screw-type dental implant was selected. 4.0 mm height solid abutments were fixed over all implant fixtures. Type III gold alloy was selected for implant-supported fixed prostheses. For mesial cantilever test, model 1-1 which has three $4.1{\times}10$ mm implants and fixed prosthesis with no pontic, model 1-2 which has two $4.1{\times}10$ mm implants and fixed prosthesis with a central pontic and model 1-3 which has two $4.1{\times}10$ mm implants and fixed prosthesis with mesial cantilever were simulated. And then, 155N oblique force was applied to the buccal cusp of second premolar. For distal cantilever test, model 2-1 which has three $4.1{\times}10$ mm implants and fixed prosthesis with no pontic, model 2-2 which has two $4.1{\times}10$ mm implants and fixed prosthesis with a central pontic and model 2-3 which has two $4.1{\times}10$ mm implants and fixed prosthesis with distal cantilever were simulated. And then, 206N oblique force was applied to the buccal cusp of second premolar. The implant and superstructure were simulated in finite element software(Pro/Engineer wildfire 2.0). The stress values were observed with the maximum von Mises stresses. RESULTS: Among the models without a cantilever, model 1-1 and 2-1 which had three implants, showed lower stress than model 1-2 and 2-2 which had two implants. Although model 2-1 was applied with 206N, it showed lower stress than model 1-2 which was applied with 155N. In models that implant positions of models were same, the amount of applied occlusal load largely influenced the maximum von Mises stress. Model 1-1, 1-2 and 1-3, which were loaded with 155N, showed less stress than corresponding model 2-1, 2-2 and 2- 3 which were loaded with 206N. For the same number of implants, the existence of a cantilever induced the obvious increase of maximum stress. Model 1-3 and 2-3 which had a cantilever, showed much higher stress than the others which had no cantilever. In all models, the von Mises stresses were concentrated at the cortical bone around the cervical region of the implants. Meanwhile, in model 1-1, 1-2 and 1-3, which were loaded on second premolar position, the first premolar participated in stress distribution. First premolars of model 2-1, 2-2 and 2-3 did not participate in stress distribution. CONCLUSION: 1. The more implants supported, the less stress was induced, regardless of applied occlusal loads. 2. The maximum von Mises stress in the bone of the implant-supported three unit fixed dental prosthesis with a mesial cantilever was 1.38 times that with a central pontic. The maximum von Mises stress in the bone of the implant-supported three-unit fixed dental prosthesis with a distal cantilever was 1.59 times that with a central pontic. 3. A distal cantilever induced larger stress in the bone than a mesial cantilever. 4. A adjacent tooth which contacts implant-supported fixed prosthesis participated in the stress distribution.

Three-Dimensional Finite Element Analysis of Internal Connection Implant System (Gsii$^{(R)}$) According to Three Different Abutments and Prosthetic Design (국산 내부연결형 임플란트시스템(GS II$^{(R)}$)에서 지대주 연결방식에 따른 응력분석에 관한 연구)

  • Jang, Mi-Ra;Kwak, Ju-Hee;Kim, Myung-Rae;Park, Eun-Jin;Park, Ji-Marn;Kim, Sun-Jong
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.2
    • /
    • pp.179-195
    • /
    • 2010
  • In the internal connection system, the loading transfer mechanism within the inner surface of the implant and also the stress distribution occuring to the mandible can be changed according to the abutment form. Therefore it is thought to be imperative to study the difference of the stress distribution occuring at the mandible according to the abutment form. The purpose of this study was to assess the loading distributing characteristics of three different abutments for GS II$^{(R)}$ implant fixture(Osstem, Korea) under vertical and inclined loading using finite element analysis. Three finite element models were designed according to three abutments; 2-piece Transfer$^{TM}$ abutment made of pure titanium(GST), 2-piece GoldCast$^{TM}$ abutment made of gold alloy(GSG), 3-piece Convertible$^{TM}$ abutment with external connection(GSC). This study simulated loads of 100N in a vertical direction on the central pit(load 1), on the buccal cusp tip(load 2) and $30^{\circ}$ inward inclined direction on the central pit(load 3), and on the buccal cusp tip(load 4). The following results were obtained. 1. Without regard to the loading condition, greater stress was concentrated at the cortical bone contacting the upper part of the implant fixture and lower stress was taken at the cancellous bone. 2. When off-axis loading was applied, high stress concentration observed in cervical area. 3. GSG showed even stress distribution in crown, abutment and fixture. GST showed high stress concentration in fixture and abutment screw. GSC showed high stress concentration in fixture and abutment. 4. Maximum von Mises stress in the surrounding bone had no difference among three abutment type. In GS II$^{(R)}$ conical implant system, different stress distribution pattern was showed according to the abutment type and the stress-induced pattern at the supporting bone according to the abutment type had no difference among them.

Comparision of Trans-Tibial and Anteromedial Portal Approach in Femoral Tunneling of Anterior Cruciate Ligament Reconstruction (전방십자인대 재건술의 대퇴골 터널 굴착시 경경골 접근법과 전내측통로 접근법의 비교)

  • Sohn, Sung-Keun;Chang, Yun-Suk;Chung, ll-Kwon;Kim, Kyung-Taek
    • Journal of the Korean Arthroscopy Society
    • /
    • v.8 no.2
    • /
    • pp.75-81
    • /
    • 2004
  • Purpose: Recent development and advances in arthroscopic surgical techniques for Anterior Cruciate Ligament(ACL) reconstruction have led to the ideal location for the etric point from 10 o'clock (in right knee) and 13:30 (in left knee) to 10:30 (in right knee) and 14 o'clock (in left knee) in the frontal plane. This study was performed to compare operative methods and the radiologic results of femoral tunnels made through the tibial tunnel(trans-tibial approach) and the anteromedial portal. Material and Methods: From January 2003 to May 2004, one-hundred reconstructions of anterior cruciate ligament were performed. Group I (femoral tunnel through tibial tunnel) was composed of 50 cases and group ll (femoral tunnel through anteromedial portal) was consisted of 50 cases. The study was performed to compare the radiographic results of femoral tunnels made through the tibial tunnel and the anteromedial portal and operative methods. Results: In operative methods at Group II, femoral tunnel was made more easily at isometric point than Group I, a good visual field was achived because 100$^{\circ}$ flxion of knee, they can be reduced risk of posterior cortical breakage and tunnel-graft mismatching and decreased divergence of femoral interference screw in radiology (P<0.05). The angle between femoral tunnel and longitudinal axis of ACL wae increased at Group ll. Conclusion: Aanteromedial portal technique was more useful in ACL reconstruction for femoral tunnel toward 10 o'clock to10:30(in right) or 1:30 to 2 o'clock(in left).

  • PDF

A STUDY ON THE TEMPERATURE CHANGES OF BONE TISSUES DURING IMPLANT SITE PREPARATION (임플랜트 식립부위 형성시 골조직의 온도변화에 관한 연구)

  • Kim Pyung-Il;Kim Yung-Soo;Jang Kyung-Soo;Kim Chang-Whe
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.1
    • /
    • pp.1-17
    • /
    • 2002
  • The purpose of this study is to examine the possibility of thermal injury to bone tissues during an implant site preparation under the same condition as a typical clinical practice of $Br{\aa}nemark$ implant system. All the burs for $Br{\aa}nemark$ implant system were studied except the round bur The experiments involved 880 drilling cases : 50 cases for each of the 5 steps of NP, 5 steps of RP, and 7 steps of WP, all including srew tap, and 30 cases of 2mm twist drill. For precision drilling, a precision handpiece restraining system was developed (Eungyong Machinery Co., Korea). The system kept the drill parallel to the drilling path and allowed horizontal adjustment of the drill with as little as $1{\mu}m$ increment. The thermocouple insertion hole. that is 0.9mm in diameter and 8mm in depth, was prepared 0.2mm away from the tapping bur the last drilling step. The temperatures due to countersink, pilot drill, and other drills were measured at the surface of the bone, at the depths of 4mm and 8mm respectively. Countersink drilling temperature was measured by attaching the tip of a thermocouple at the rim of the countersink. To assure temperature measurement at the desired depths, 'bent-thermocouples' with their tips of 4 and 8mm bent at $120^{\circ}$ were used. The profiles of temperature variation were recorded continuously at one second interval using a thermometer with memory function (Fluke Co. U.S.A.) and 0.7mm thermocouples (Omega Co., U.S.A.). To simulate typical clinical conditions, 35mm square samples of bovine scapular bone were utilized. The samples were approximately 20mm thick with the cortical thickness on the drilling side ranging from 1 to 2mm. A sample was placed in a container of saline solution so that its lower half is submerged into the solution and the upper half exposed to the room air, which averaged $24.9^{\circ}C$. The temperature of the saline solution was maintained at $36.5^{\circ}C$ using an electric heater (J. O Tech Co., Korea). This experimental condition was similar to that of a patient s opened mouth. The study revealed that a 2mm twist drill required greatest attention. As a guide drill, a twist drill is required to bore through a 'virgin bone,' rather than merely enlarging an already drilled hole as is the case with other drills. This typically generates greater amount of heat. Furthermore, one tends to apply a greater pressure to overcome drilling difficulty, thus producing even greater amount heat. 150 experiments were conducted for 2mm twist drill. For 140 cases, drill pressure of 750g was sufficient, and 10 cases required additional 500 or 100g of drilling pressure. In case of the former. 3 of the 140 cases produced the temperature greater than $47^{\circ}C$, the threshold temperature of degeneration of bone tissue (1983. Eriksson et al.) which is also the reference temperature in this study. In each of the 10 cases requiring extra pressure, the temperature exceeded the reference temperature. More significantly, a surge of heat was observed in each of these cases This observations led to addtional 20 drilling experiments on dense bones. For 10 of these cases, the pressure of 1,250g was applied. For the other 10, 1.750g were applied. In each of these cases, it was also observed that the temperature rose abruptly far above the thresh old temperature of $47^{\circ}C$, sometimes even to 70 or $80^{\circ}C$. It was also observed that the increased drilling pressure influenced the shortening of drilling time more than the rise of drilling temperature. This suggests the desirability of clinically reconsidering application of extra pressures to prevent possible injury to bone tissues. An analysis of these two extra pressure groups of 1,250g and 1,750g revealed that the t-statistics for reduced amount of drilling time due to extra pressure and increased peak temperature due to the same were 10.80 and 2.08 respectively suggesting that drilling time was more influenced than temperature. All the subsequent drillings after the drilling with a 2mm twist drill did not produce excessive heat, i.e. the heat generation is at the same or below the body temperature level. Some of screw tap, pilot, and countersink showed negative correlation coefficients between the generated heat and the drilling time. indicating the more the drilling time, the lower the temperature. The study also revealed that the drilling time was increased as a function of frequency of the use of the drill. Under the drilling pressure of 750g, it was revealed that the drilling time for an old twist drill that has already drilled 40 times was 4.5 times longer than a new drill The measurement was taken for the first 10 drillings of a new drill and 10 drillings of an old drill that has already been used for 40 drillings. 'Test Statistics' of small samples t-test was 3.49, confirming that the used twist drills require longer drilling time than new ones. On the other hand, it was revealed that there was no significant difference in drilling temperature between the new drill and the old twist drill. Finally, the following conclusions were reached from this study : 1 Used drilling bur causes almost no change in drilling temperature but increase in drilling time through 50 drillings under the manufacturer-recommended cooling conditions and the drilling pressure of 750g. 2. The heat that is generated through drilling mattered only in the case of 2mm twist drills, the first drill to be used in bone drilling process for all the other drills there is no significant problem. 3. If the drilling pressure is increased when a 2mm twist drill reaches a dense bone, the temperature rises abruptly even under the manufacturer-recommended cooling conditions. 4. Drilling heat was the highest at the final moment of the drilling process.