Factors influencing primary stability of miniplate anchorage: a three-dimensional finite element analysis

미니플레이트의 골내 고정원 적용 시 초기 안정성에 영향을 주는 요인에 대한 3차원 유한요소법적 연구

  • Lee, Nam-Ki (Department of Orthodontics, School of Dentistry, Kangnung National University) ;
  • Choi, Dong-Soon (Department of Orthodontics, School of Dentistry, Kangnung National University) ;
  • Jang, In-San (Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Nagasaki University) ;
  • Cha, Bong-Kuen (Department of Orthodontics, School of Dentistry, Kangnung National University)
  • 이남기 (강릉대학교 치과대학 교정학교실, 구강과학연구소) ;
  • 최동순 (강릉대학교 치과대학 교정학교실, 구강과학연구소) ;
  • 장인산 (나가사키대학교 치과대학 교정학교실) ;
  • 차봉근 (강릉대학교 치과대학 교정학교실, 구강과학연구소)
  • Published : 2008.10.30

Abstract

Objective: The purpose of this study was to evaluate the stress distribution in bone and displacement distribution of the miniscrew according to the length and number of the miniscrews used for the fixation of miniplate, and the direction of orthodontic force. Methods: Four types of finite element models were designed to show various lengths (6 mm, 4 mm) and number (3, 2) of 2 mm diameter miniscrew used for the fixation of six holes for a curvilinear miniplate. A traction force of 4 N was applied at $0^{\circ}$, $30^{\circ}$, $60^{\circ}$ and $90^{\circ}$ to an imaginary axis connecting the two most distal unfixed holes of the miniplate. Results: The smaller the number of the miniscrew and the shorter the length of the miniscrew, the more the maximum von Mises stress in the bone and maximum displacement of the miniscrew increased. Most von Mises stress in the bone was absorbed in the cortical portion rather than in the cancellous portion. The more the angle of the applied force to the imaginary axis increased, the more the maximum von Mises stress in the bone and maximum displacement of the miniscrew increased. The maximum von Mises stress in the bone and maximum displacement of the miniscrew were measured around the most distal screw-fixed area. Condusions: The results suggest that the miniplate system should be positioned in the rigid cortical bone with 3 miniscrews of 2 mm diameter and 6 mm length, and its imaginary axis placed as parallel as possible to the direction of orthodontic force to obtain good primary stability.

본 연구는 골내 고정원으로 사용하는 미니플레이트 시스템의 초기 안정성에 영향을 주는 요인에 대해 알아보기 위해 시행하였다. 미니플레이트의 고정에 사용되는 미니스크류의 길이, 수 및 적용되는 교정력의 방향에 따른 골내 응력 분포 양상과 미니스크류의 변위 정도를 분석하기 위하여 3차원 유한요소분석을 시행하였다. 단순화한 골 모델에 6 hole의 곡선형 미니플레이트를 위치하고 직경 2 mm의 미니스크류로 고정하되 각각 6 mm와 4 mm 길이의 두 가지 종류로 세 개 또는 두 개로 고정한 총 네 개의 유한요소모델을 제작한 후 각각의 모델에서 4 N의 교정력을 미니플레이트의 고정되지 않은(unfixed) 가장 원심측 두개의 hole을 연결한 가상의 축에 대해 $0^{\circ}$, $30^{\circ}$, $60^{\circ}$, $90^{\circ}$ 방향으로 각각 적용하였다. 미니플레이트를 고정하는 미니스크류가 동일 길이일 경우 개수가 작을수록, 동일 개수일 경우 길이가 짧을수록 골에 나타나는 최대 응력과 미니스크류의 최대 변위가 증가되었다. 골에 나타나는 최대 응력은 해면골에 비해 피질골에 집중되어 응력의 대부분은 피질골에서 흡수되었다. 미니플레이트의 가상의 축에 대해 교정력의 견인 방향이 증가할수록 골내의 최대 응력과 미니스크류의 최대 변위가 증가되었다. 골내의 최대 응력과 미니스크류의 최대 변위는 적용된 견인력 지점에서 가장 가까운 미니스크류 고정 부위였다. 이상의 결과로 미니플레이트 시스템의 초기 안정성을 위해 2 mm 직경의 미니스크류를 사용 시 4 mm 보다는 6 mm 길이의 미니스크류를, 2개보다는 3개 식립하는 것이 더 유리하며, 미니플레이트의 가상의 축에 대해 적용하는 교정력의 견인방향이 가급적 일치되도록 미니플레이트를 위치시키는 것이 좋을 것으로 생각된다.

Keywords

References

  1. Turley PK, Kean C, Schur J, Stefanac J, Gray J, Hennes J, et al. Orthodontic force application to titanium endosseous implants. Angle Orthod 1988;58:151-62
  2. Linder-Aronson S, Nordenram A, Anneroth G. Titanium implant anchorage in orthodontic treatment an experimental investigaton in monkeys. Eur J Orthod 1990;12:414-9 https://doi.org/10.1093/ejo/12.4.414
  3. Roberts WE, Helm FR, Marshall KJ, Gongloff RK. Rigid endosseous implants for orthodontic and orthopedic anchorage. Angle Orthod 1989;59:247-56
  4. Odman J, Lekholm U, Jemt T, Thilander B. Osseointegrated implants as orthodontic anchorage in the treatment of partially edenturous adult patients. Eur J Orthod 1994;16:187-201 https://doi.org/10.1093/ejo/16.3.187
  5. Kokich VG. Managing complex orthodontic problem: the use of implants for anchorage. Semin Orthod 1996;2:153-60 https://doi.org/10.1016/S1073-8746(96)80050-8
  6. Creekmore TD, Eklund MK. The possibility of skeletal anchorage. J Clin Orthod 1983;17:266-9
  7. Costa A, Raffainl M, Melsen B. Miniscrews as orthodontic anchorage: a preliminary report. Int J Adult Orthodon Orthognath Surg 1998;13:201-9
  8. Park HS. The skeletal cortical anchorage using titanium mictoscrew implants. Korean J Orthod 1999;29:699-706
  9. Ko DI, Lim SH, Kim KW. Treatment of occlusal plane canting using miniscrew anchorage. World J Orthod 2006;7: 269-78
  10. Xun C, Zeng X, Wang X. Microscrew anchorage in skeletal anterior open-bite treatment. Angle Orthod 2007;77:47-56 https://doi.org/10.2319/010906-14R.1
  11. Umemori M, Sugawara J, Mitani H, Nagasaka H, Kawamura H. Skeletal anchorage system for open-bite correction. Am J Orthod Dentofacial Orthop 1999;115:166-74 https://doi.org/10.1016/S0889-5406(99)70345-8
  12. Sugawara J, Nishimura M. Minibone plates: the skeletal anchorage system. Semin Orthod 2005;11:47-56 https://doi.org/10.1053/j.sodo.2004.11.008
  13. Singer SL, Henry PJ, Rosenberg I. Osseointegrated implants as an adjunct to facemask therapy: a case report. Angle Orthod 2000;70:253-62
  14. Enacar A, Giray B, Pehlivanoglu M, Iplikcioglu H. Facemask therapy with rigid anchorage in a patient with maxillary hypoplasia and severe oligodontia. Am J Orthod Dentofacial Orthop 2003;123:571-7 https://doi.org/10.1016/S0889-5406(03)00052-0
  15. Cha BK, Lee NK, Choi DS. Maxillary protraction treatment of skeletal Class III children using miniplate anchorage. Korean J Orthod 2007;37:73-84
  16. Park HS, Jeong SH, Kwon OW. Factors affecting the clinical success of screw implants used as orthodontic anchorage. Am J Orthod Dentofacial Orthop 2006;130:18-25 https://doi.org/10.1016/j.ajodo.2004.11.032
  17. Motoyoshi M, Hirabayashi M, Uemura M, Shimizu N. Recommended placement torque when tightening an orthodontic mini-implant. Clin Oral Implants Res 2006;17:109-14 https://doi.org/10.1111/j.1600-0501.2005.01211.x
  18. Chen CH, Chang CS, Hsieh CH, Tseng YC, Shen YS, Huang IY, et al. The use of microimplants in orthodontic anchorage. J Oral Maxillofac Surg 2006;64:1209-13 https://doi.org/10.1016/j.joms.2006.04.016
  19. Lim JW, Kim WS, Kim IK, Son CY, Byun HI. Three dimensional finite element method for stress distribution on the length and diameter of orthodontic miniscrew and cortical bone thickness. Korean J Orthod 2003;33:11-20
  20. Byoun NY, Nam EH, Yoon AY, Kim IK. Three-dimensional finite element analysis for stress distribution on the diameter of orthodontic mini-implants and insertion angle to the bone surface. Korean J Orthod 2006;36:178-87
  21. Miyawaki S, Koyama I, Inoue M, Mishima K, Sugahara T, Takano-Yamamoto T. Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. Am J Orthod Dentofacial Orthop 2003;124:373-8 https://doi.org/10.1016/S0889-5406(03)00565-1
  22. Kircelli BH, Pektas ZO, Uckan S. Orthopedic protraction with skeletal anchorage in a patient with maxillary hypoplasia and hypodontia. Angle Orthod 2006;76:156-63
  23. Zhou YH, Ding P, Lin Y, Qiu LX. Facemask therapy with miniplate implant anchorage in a patient with maxillary hypoplasia. Chin Med J (Engl) 2007;120:1372-5
  24. Kim JH, Joo JY, Park YW, Cha BK, Kim SM. Study of maxillary cortical bone thickness for skeletal anchorage system in Korean. J Korean Oral Maxillofac Surg 2002;28:249-55
  25. Geng JP, Tan KB, Liu GR. Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent 2001;85:585-98 https://doi.org/10.1067/mpr.2001.115251
  26. Stegaroiu R, Sato T, Kusakari H, Miyakawa O. Influence of restoration type on stress distribution in bone around implants: a three-dimensional finite element analysis. Int J Oral Maxillofac Implants 1998;13:82-90
  27. Erkmen E, Simşek B, Yücel E, Kurt A. Three-dimensional finite element analysis used to compare methods of fixation after sagittal split ramus osteotomy: setback surgery-posterior loading. Br J Oral Maxillofac Surg 2005;43:97-104 https://doi.org/10.1016/j.bjoms.2004.10.007
  28. Chen YH, Chang HH, Chen YJ, Lee D, Chiang HH, Yao CC. Root contact during insertion of miniscrews for orthodontic anchorage increases the failure rate: an animal study. Clin Oral Implants Res 2008;19:99-106
  29. Kokich VG, Shapiro PA, Oswald R, Koskinen-Moffett L, Clarren SK. Ankylosed teeth as abutments for maxillary protraction: a case report. Am J Orthod 1985;88:303-7 https://doi.org/10.1016/0002-9416(85)90129-0
  30. Cha BK, Park YW, Lee NK, Lee YH. Two new modalities for maxillary protraction therapy: international ankylosis and distraction osteogenesis. J Korean Dent Assoc 2000;38:997-1007
  31. Schwimmer A, Greenberg AM, Kummer F, Kaynar A. The effect of screw size and insertion technique on the stability of the mandibular sagittal split osteotomy. J Oral Maxillofac Surg 1994;52:45-8 https://doi.org/10.1016/0278-2391(94)90013-2
  32. Tharanon W. Comparison between the rigidity of bicortical screws and a miniplate for fixation of a mandibular setback after a simulated bilateral sagittal split osteotomy. J Oral Maxillofac Surg 1998;56:1055-8 https://doi.org/10.1016/S0278-2391(98)90255-5
  33. Edwards RC, Kiely KD, Eppley BL. Fixation of bimaxillary osteotomies with resorbable plates and screws: experience in 20 consecutive cases. J Oral Maxillofac Surg 2001;59:271-6 https://doi.org/10.1053/joms.2001.20988
  34. Maurer P, Holweg S, Schubert J. Finite-element-analysis of different screw-diameters in the sagittal split osteotomy of the mandible. J Craniomaxillofac Surg 1999;27:365-72 https://doi.org/10.1054/jcms.1999.0069
  35. Rohlmann A, Mossner U, Bergmann G, Kolbel R. Finite-element- analysis and experimental investigation in a femur with hip endoprosthesis. J Biomech 1983;16:727-42 https://doi.org/10.1016/0021-9290(83)90082-9
  36. Tanne K, Miyasaka J, Yamagata Y, Sachdeva R, Tsutsumi S, Sakuda M. Three-dimensional model of the human craniofacial skeleton: method and preliminary results using finite element analysis. J Biomed Eng 1988;10:246-52 https://doi.org/10.1016/0141-5425(88)90006-4
  37. Motoyoshi M, Yano S, Tsuruoka T, Shimizu N. Biomechanical effect of abutment on stability of orthodontic mini-implant. A finite element analysis. Clin Oral Implants Res 2005;16:480-5 https://doi.org/10.1111/j.1600-0501.2005.01130.x
  38. Motoyoshi M, Yoshida T, Ono A, Shimizu N. Effect of cortical bone thickness and implant placement torque on stability of orthodontic mini-implants. Int J Oral Maxillofac Implants 2007;22:779-84
  39. Yoon BS, Choi BH, Lee WY, Kim KN, Shim HB, Park JH. A study on titanium miniscrew as orthodontic anchorage; an experimental investigation in dogs. Korean J Orthod 2001;31: 517-23
  40. Frost HM. A 2003 update of bone physiology and Wolff's law for clinicians. Angle Orthod 2004;74:3-15
  41. Morris HF, Winkler S, Ochi S, Kanaan A. A new implant designed to maximize contact with trabecular bone: survival to 18 months. J Oral Implantol 2001;27:164-73 https://doi.org/10.1563/1548-1336(2001)027<0164:ANIDTM>2.3.CO;2