• Title/Summary/Keyword: corrosion thickness

Search Result 594, Processing Time 0.033 seconds

An Experimental Study on the Corrosion Protection Method of Reinforcing Steel in Concrete by Using Corrosion Inhibitor (방청제에 의한 콘크리트 내의 철근 방식법에 관한 실험적 연구)

  • 배수호;정영수;권영우;김년산;권혁진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.710-713
    • /
    • 2000
  • The corrosion protection methods of reinforcing steel in concrete are the various methods such as increasing thickness of cover concrete, using of reinforcing bars coated with epoxy, dosage of corrosion inhibitor as concrete admixture, cathodic protection method and etc. The most economical method of them will be the corrosion protection method using corrosion inhibitor as concrete admixture. Therefore, the purpose of this research is to investigate the performance of corrosion protection of ordinary strength and high strength concrete using corrosion inhibitor, respectively. For this purpose, after manufacturing ordinary strength and high strength concrete with and without corrosion inhibitor, the accelerated corrosion tests for reinforcing steel were conducted according to the periodic cycles (140 day) of wetting ($65^{\circ}C$, 90% R.H.) and drying period ($15^{\circ}C$, 65% R.H.). As a result, th high strength concrete using corrosion inhibitor showed an excellent performance of corrosion protection.

  • PDF

Detection of Second-Layer Corrosion in Aging Aircraft Fuselage

  • Kim, Noh-Yu;Achenbach, J.D.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.6
    • /
    • pp.417-426
    • /
    • 2006
  • A Digital X-ray imaging system using Compton backscattering has been developed to obtain a cross-sectional profile and mass loss of corroded lap-splices of aging aircraft from density variation. A slit-type camera was designed to focus on a small scattering volume inside the material, from which the backscattered photons are collected by a collimated scintillator detector for interpretation of material characteristics. The cross section of the lap-joint is scanned by moving the scattering volume through the thickness direction of the specimen. The mass loss of each layer has been estimated from a Compton backscatter A-scan to obtain the thickness of each layer including the aluminum sheet, the corrosion layer and the sealant. Quantitative information such as location and width of planar corrosion in the lap splices of fuselages is obtained by deconvolution using a nonlinear least-square error minimization method(BFGS method): A simple reconstruction model is also introduced to overcome distortion of the Compton backscatter data due to attenuation effects attributed to beam hardening and quantum noise.

Effects of Heat Treatment on Surface Properties of Aluminum 6061 Alloy After Anodization (알루미늄 6061 합금 양극산화 후 열처리에 따른 표면 특성 관찰)

  • Seungmin, Lee;Chanyoung, Jeong
    • Corrosion Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.495-502
    • /
    • 2022
  • Anodization is a representative electrochemical surface treatment method that can improve both heat resistance and corrosion resistance by forming an anodization film on the surface of the aluminum. However, these properties can be changed after an additional heat treatment process. In this study, Al 6061 was subjected to an anodization process at 60 V for 1 hour, 5 hours, or 9 hours. An additional heat treatment process was performed at 500 ℃ for 30 minutes. Field emission scanning electron microscopy (FE-SEM) analysis revealed that the thickness of the anodized film was increased in proportion to the anodization time. Both pore size and pore diameter of the anodized film was also increased after anodization. After an additional heat treatment process, there were no significant changes in the thickness, pore size, or pore diameter of the anodized film. Heat resistance was confirmed through thermal analysis and chemical resistance was evaluated with a potentiodynamic polarization test.

Study on Improvement of Corrosion Resistance and Wear Resistance by Anodizing and Sealing Treatment with Nano-diamond Powder on aluminum (알루미늄의 아노다이징과 나노 다이아몬드 분말 봉공처리에 의한 내식성과 내마모성 향상에 관한 연구)

  • Kang, Soo Young;Lee, Dae Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.3
    • /
    • pp.121-127
    • /
    • 2014
  • In this study, in order to improve corrosion resistance and wear resistance of aluminum, surface treatment was made by anodizing with oxalic acid solution and sealing with nano-diamond powder. Average size of nano-diamond powder was 30nm. Anodizing with oxalic acid made many pores in the aluminum oxide layer. Pore size and oxide thickness were investigated by scanning electron microscope (SEM). Pore size increased as temperature increased and voltage increased. It was possible to make oxide layer with pore diameter more than 50 nm. Oxide thickness increased as temperature and voltage and treatment time increased. Oxide layer with above $10{\mu}m$ thickness was made. Aluminum oxide layer with many pores was sealed by water with nano-diamond powder. Surface morphology was investigated by SEM. After sealing treatment with nano-diamond powder, corrosion resistance, wear resistance and hardness increased.

Water Layer in Course of Corrosion of Copper in Humid Air Containing $SO_2$

  • Sasaki, Takeshi;Itoh, Jun;Ohtsuka, Toshiaki
    • Corrosion Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.88-92
    • /
    • 2003
  • The technique for in situ simultaneous measurements of IR-RAS and QCM, which has been developed for investigation of corrosion in gaseous environments, was employed to study the effects of an extremely thin water layer on the corrosion rate. An evaporated copper film on a QCM element was exposed to air containing water vapor and $SO_2$, and time-resolved IR-RAS spectra were measured and mass gains were simultaneously followed with QCM. The tested ranges of relative humidity (RH) and concentration of $SO_2$ were 60% - 90% and 1 - 20 ppm, respectively. On the basis of 2D-IR analysis, the corrosion products were determined to be Chevreul's salt ($CuSO_3Cu_2SO_3{\cdot}2H_2O$) and $CuSO_4{\cdot}5H_2O$. By constructing curves of the relations between band intensities of IR spectra and mass gains of QCM for the corrosion products, the time variations in each product were determined from spectral experiments on copper plates. The thicknesses of physically adsorbed water layers in course of the corrosion process were also determined from water band intensities. The results showed that the thickness of the physically adsorbed water layer increased with increase in RH, and it also increased with increase in accumulation of corrosion products. The latter is probably due to the capillary effect of the corrosion products.

Effect of the Amount of CH4 Content on the Characteristics of Surface Layers of Low Temperature Plasma Nitrocarburizied STS 204Cu Stainless Steel (STS 204Cu 스테인리스강의 저온 플라즈마 침질탄화 처리 시 CH4 가스 함량에 따른 경화층 (S-Phase) 거동)

  • Lee, Insup;Kim, Hojun
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.1
    • /
    • pp.54-61
    • /
    • 2018
  • Plasma Nitriding treatment was performed on STS 204Cu stainless steel samples at a temperature of $400^{\circ}C$ for 15 hours with varying $N_2$ content as 10%, 15% and 25%. Regardless of the content of $N_2$, S-Phase which is a hardened layer of Nitrogen (N) supersaturated phase, was formed in the surface of plasma treated samples. When $N_2$ content was 25%, the thickness of the hardened layer reached up to about $7{\mu}m$ and the surface hardness reached a value of $560Hv_{0.05}$, which is about 2.5 times higher than that of untreated sample (as received $220Hv_{0.05}$). From potentiodynamic polarization test, it was observed that compared to as received sample, the corrosion potential and the corrosion current density of the plasma treated samples were decreased regardless of the $N_2$ content, but the corrosion resistance was not increased much due to the precipitation of $Cr_2N$. On the other hand, pitting potential of the samples treated with 10% and 15% $N_2$ was higher than that of as received sample, however, the samples treated with 25% exhibited a lower pitting potential. Therefore, 10% $N_2$ content was selected as optimum plasma nitriding condition and to further increase both the thickness and surface hardness and the corrosion resistance of the hardened layer, different $CH_4$ content such as 1%, 3% and 5% was introduced into the plasma nitriding atmosphere. With 1% $CH_4$, the thickness of the hardened layer reached up to about $11{\mu}m$ and the surface hardness was measured as about $620Hv_{0.05}$, which is about 2.8 times that of as received sample. And the corrosion resistance of the plasma treated sample by using 1% $CH_4$ was improved significantly due to much higher pitting potential, and lower corrosion current density. When the $CH_4$ content was more than 1%, the thickness and surface hardness of the hardened layer decreased slightly and the corrosion resistance also decreased.

Stress Corrosion Cracking of Alloy 600 and Alloy 690 in Caustic Solution

  • Kim, Hong Pyo;Lim, Yun Soo;Kim, Joung Soo
    • Corrosion Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.82-87
    • /
    • 2003
  • Stress corrosion cracking of Alloy 600 and Alloy 690 has been studied with a C-ring specimen in 1%, 10% and 40% NaOH at $315^{\circ}C$. SCC test was performed at 200 mV above corrosion potential. Initial stress on the apex of C-ring specimen was varied from 300 MPa to 565 MPa. Materials were heat treated at various temperatures. SCC resistance of Ni-$_\chi$Cr-10Fe alloy increased as the Cr content of the alloy increased if the density of an intergranular carbide were comparable. SCC resistance of Alloy 600 increased in caustic solution as the product of coverage of an intergranular carbide in grain boundary, intergranular carbide thickness and Cr concentration at grain boundary increased. Low temperature mill annealed Alloy 600 with small grain size and without intergranular carbide was most susceptible to SCC. TT Alloy 690 was most resistant to SCC due to the high value of the product of coverage of an intergranular carbide in grain boundary, intergranular carbide thickness and Cr concentration at grain boundary. Dependency of SCC rate on stress and NaOH concentration was obtained.

Formation of Cerium Conversion Coatings on AZ31 Magnesium Alloy

  • Fazal, Basit Raza;Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.1
    • /
    • pp.1-13
    • /
    • 2016
  • This review deals with one of the surface modification techniques, chemical conversion coating and particularly cerium-based conversion coatings (CeCC) as a promising substitute for chromium and phosphate conversion coating on magnesium and its alloys. The CeCCs are commonly considered environmentally friendly. The effects of surface preparation, coating thickness, bath composition, and e-paint on the corrosion behavior of CeCCs have been studied on the AZ31 magnesium alloy. This review also correlates the coating microstructural, morphological, and chemical characteristics with the processing parameters and corrosion protection. Results showed that the as-deposited coating system consists of a three layer structure (1) a nanocrystalline MgO transition layer in contact with the Mg substrate, (2) a nanocrystalline CeCC layer, and (3) an outer amorphous CeCC layer. The nanocrystalline CeCC layer thickness is a function of immersion time and cerium salt used. The overall corrosion protection was crucially dependent on the presence of coating defects. The corrosion resistance of AZ31 magnesium alloy was better for thinner CeCCs, which can be explained by the presence of fewer and smaller cracks. On the other hand, maximum corrosion protection was achieved when AZ31 magnesium samples with thin CeCCs are e-painted. The e-paint layer further restricts and hinders the movement of chloride and other aggressive ions present in the environment from reaching the magnesium surface.

A Study on Real-Time Corrosion Thickness Measurement Technique of Insulated Pipeline (보온재 부착 파이프라인의 부식두께 측정에 관한 연구)

  • Jang, Ji-Hun;Jo, Gyeong-Sik;Lee, Jong-O;Kim, Gi-Dong
    • 연구논문집
    • /
    • s.31
    • /
    • pp.135-147
    • /
    • 2001
  • The wall-thickness of insulated pipelines can be easily evaluated by measuring the gamma-ray transmission intensity because this intensity is inversely proportional to the thickness of insulated pipeline. The main purpose of this study is to develop the nondestructive and filmless on-line inspection system of corrosion by measuring the wall thickness of insulated pipeline. The inspection system is constructed with radioisotope, 64 channel photo diode array detector, crawler system and data taking and operating software. The traditional off-line radiographic method carried out by exposing film cassettes can be replaced by this cost-effective on-line digital imaging method and the application will be greatly expected especially in the chemical and petrochemical industries.

  • PDF

Corrosion Loss of the Shell Plates of the General Cargo Vessels and the Lumber Carriers According to the Age (일반화물선과 원목운반선의 선각외판 부식도의 선령별 변화)

  • 박중희
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.17 no.1
    • /
    • pp.13-18
    • /
    • 1981
  • Corrosion loss of the shell plates of the steel vessels are measured and analyzed on the thirty cargo vessels and fifteen lumber carriers of which nationality belong to Korea. Thickness of the shell plates were determined at the every observed points set along the fore and aft line and perpendicular to it, by use of the ultrasonic thickness meter. Difference of the thickness between the original and the determined shell plates are given as the corrosion loss at the present age. The results obtained are summarized as follows: 1. On the cargo vessels, (1) The total mean of the corrosion loss is greatest at the light waterline, in every age class of the vessels. (2) The total mean of the corrosion loss on the fore and aft line shows little difference, even though it is slightly greater at the fore part, in every age class of the vessels. (3) Corrosion loss along the perpendicular line grows greater in the order of freeboard, load waterline, upper bilge line and light waterline, within the 16 of the age of the observed vessels. Its order varies to freeboard, upper bilge line, load waterline and light waterline in the age of 35. Corrosion loss at the light waterline and load waterline, in the age of 35, shows 3 times of it at the freeboard, and it at the upper bildge line shows twice of it at the freeboard. The fact significates the corrosion grows rapidly around the waterline. 2. On the lumber carriers, (1) The total mean of the corrosion loss is greatest at the upper bilge line, in the every age class of the vessels. (2) Total mean of the corrosion loss on the fore and aft line shows little difference, even though it is slightly greater at the fore part, in every age class of the vessels. (3) Corrosion loss along the perpendicular line is least at the freeboard and greatest at the upper bilge line, and its value at the upper bilge line shows twice of it at the freeboard. 3. The total mean of the corrosion loss of the lumber carriers shows almost twice of the cargo vessels.

  • PDF