• Title/Summary/Keyword: corrosion behaviors

Search Result 266, Processing Time 0.028 seconds

Effect of the Cooling Rates on the Corrosion Resistance and Phase Transformation of 14Cr-3Mo Martensitic Stainless Steel

  • Park, Jee-Yong;Park, Yong-Soo
    • Corrosion Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.1-4
    • /
    • 2006
  • Martensitic stainless steel is used when mechanical properties such as high tensile strength and hardness are required. Medium carbon-contained martensitic stainless steel which contains more than 0.2 wt% of carbon should be heat-treated and quenched at the temperature where undissolved carbides are totally dissolved into the matrix. In particular, the dissolution and reprecipitation behaviors of various forms of carbides are affected by such parameters as heating rate, heating temperature, duration time and cooling rate. This study is to investigate the effects of heat treatment parameters of 14Cr-3Mo martensitic stainless on corrosion resistance and phase transformation in relation to the dissolution and reprecipitation of carbides.

Corrosion Behavior and Surface Coating of Muffler Materials by Using EB-PVD (전자빔 진공증착기를 이용한 muffler재료의 표면코팅과 내식특성)

  • 최한철
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.1
    • /
    • pp.39-48
    • /
    • 2001
  • Fe-Cr-Al alloy has been studied for application in automobile muffler materials due to good corrosion and oxidation resistance. In order to develop the automobile muffler materials, corrosion behaviors of electron beam physical vapor deposition (EB-PVD) coated surface of muffler matericls of muffler materials were investigated using potentiostat. For 0.1M NaCl solution, corrosion potential and pitting potential of Fe-20Cr-10Al was higher than that of Fe-5Cr- 10Al samples. Especially, in the case of Ti and Nb coated samples, pitting potential increased remarkably compared with non-coated samples. For 0.1M $CaCl_2$ solution, Ti-coated Fe-20Cr-10Al showed remarkably improved pitting corrosion resistance in comparison with non-coated Fe-20Cr-10Al and Fe-5Cr-10Al. The number and size of pits were decreased in the case of Ti coated samples in the 0.1M NaCl and 0.1M $CaCl_2$ solution.

  • PDF

Effect of Isothermal annealing on the Corrosion Resistance of an Amorphous Alloy (비정질 합금의 부식저항성에 미치는 열처리의 영향)

  • Shin, Sang-Soo;Lee, Chang-Myeon;Yang, Jae-Woong;Lee, Jae-Chul
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.2
    • /
    • pp.53-57
    • /
    • 2008
  • This study examined the role of excess free volume on the corrosion resistance of an amorphous alloy. Corrosion behaviors were monitored on the amorphous alloys, of which amount of free volume was controlled via the isothermal annealing below the glass transition temperature, using immersion tests and potentiodynamic polarization tests in HCl aqueous solutions. It was found that the corrosion resistance of the amorphous alloy is improved by reducing the amount of excess free volume. The possible reason explaining the experimental result was discussed from the viewpoint of the internal energy associated with the annihilation of excess free volume.

Corrosion at the Grain Boundary and a Fluorine-Related Passivation Layer on Etched Al-Cu (1%) Alloy Surfaces

  • Baek, Kyu-Ha;Yoon, Yong-Sun;Park, Jong-Moon;Kwon, Kwang-Ho;Kim, Chang-Il;Nam, Kee-Soo
    • ETRI Journal
    • /
    • v.21 no.3
    • /
    • pp.16-21
    • /
    • 1999
  • After etching Al-Cu alloy films using SiCl4/Cl_2/He/CHF3 mixed gas plasma, the corrosion phenomenon at the grain boundary of the etched surface and a passivation layer on the etched surface with an SF6 plasma treatment subsequent to the etching were studied. In Al-Cu alloy system, corrosion occurs rapidly on the etched surface by residual chlorine atoms, and it occurs dominantly at the grain boundaries rather than the crystalline surfaces. To prevent corrosion, the SF6 gas plasma treatment subsequent to etching was carried out. The passivation layer is composed of fluorine-related compounds on the etched Al-Cu surface after the SF6 treatment, and it suppresses effectively corrosion on the surface as the SF6 treatment pressure increases. Corrosion could be suppressed successfully with the SF6 treatment at a total pressure of 300 mTorr. To investigate the reason why corrosion could be suppressed with the SF6 treatment, behaviors of chlorine and fluorine were studied by various analysis techniques. It was also found that the residual chlorine incorporated at the grain boundary of the etched surface accelerated corrosion and could not be removed after the SF6 plasma treatment.

  • PDF

Corrosion Characteristics of Ti-xTa Alloys with Ta contents (Ta 함량에 따른 Ti-xTa 합금의 부식특성)

  • Kim, H.J.;Choe, H.C.
    • Corrosion Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.50-55
    • /
    • 2013
  • The purpose of this study was to investigate corrosion characteristics of Ti-xTa alloys with Ta contents. Ti-xTa alloys used as samples (x=30, 40%) were arc-melted under argon atmosphere of 99.9% purity. Ti-xTa alloys were homogenized for 12hr at $1000^{\circ}C$ and then water quenched. The surface characteristics of Ti-xTa alloys were investigated using optical microscopy (OM) and X-ray diffractometer (XRD). The anodic corrosion behaviors of the specimens were examined through potentiodynamic, potentiostatic and galvanostatic test in 0.9 % NaCl solution at $36.5{\pm}1^{\circ}C$. After corrosion test, the surface characteristics of Ti-xTa alloys were investigated using OM. The microstructure of Ti-Ta alloy showed the beta structure with Ta content. The corrosion resistance of Ti alloy was improved by increasing Ta content and the corrosion morphology of Ti-Ta alloy showed that the site attacked by chloride ion decreased from the active to passive region with Ta content. Potential of Ti-40Ta alloy increased as time increased, whereas, current density of Ti-40Ta alloy decreased as time increased compared to Ti-30 alloy.

Effect of Heat Treatment Conditions on Corrosion and Hydrogen Diffusion Behaviors of Ultra-Strong Steel Used for Automotive Applications

  • Park, Jin-seong;Seong, Hwan Goo;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.267-276
    • /
    • 2019
  • The purpose of this study was to examine the influence of conditions for quenching and/or tempering on the corrosion and hydrogen diffusion behavior of ultra-strong automotive steel in terms of the localized plastic strain related to the dislocation density, and the precipitation of iron carbide. In this study, a range of analytical and experimental methods were deployed, such as field emission-scanning electron microscopy, electron back scatter diffraction, electrochemical permeation technique, slow-strain rate test (SSRT), and electrochemical polarization test. The results showed that the hydrogen diffusion parameters involving the diffusion kinetics and hydrogen solubility, obtained from the permeation experiment, could not be directly indicative of the resistance to hydrogen embrittlement (HE) occurring under the condition with low hydrogen concentration. The SSRT results showed that the partitioning process, leading to decrease in localized plastic strain and dislocation density in the sample, results in a high resistance to HE-induced by aqueous corrosion. Conversely, coarse iron carbide, precipitated during heat treatment, weakened the long-term corrosion resistance. This can also be a controlling factor for the development of ultra-strong steel with superior corrosion and HE resistance.

Electrochemical Study on the Effect of Post-Weld Heat Treatment Affecting to Corrosion Resistance Property of the Weldment of SCM440 Steel (SCM440강 용접부의 내식성에 미치는 용접후 열처리효과에 관한 전기화학적 연구)

  • 김성종;김진경;김종호;김기준;김영식;문경만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.78-88
    • /
    • 2000
  • The effect of post-weld heat treatment(PWHT) of SCM440 steel was investigated with parameters such as micro-Vickers hardness, corrosion potential, polarization behaviors, galvanic current, Al anode generating current and Al anode weight loss, etc. Each hardness of three parts(HAZ, BM, WM) by PWHT is lower than each of as-welded parts. However, hardness of WM area was the highest among those three parts in case of both PWHT and as-welded. Corrosion potential of WM part was the highest among those three parts and WM area was also acted as cathode without regard to PWHT. The magnitude of corrosion potential difference among three parts by PWHT was larger than that of three parts of as-welded, and corrosion current by galvanic cell of these three parts by PWHT was also larger compared to as-welded. Therefore, it is suggested that corrosion resistance property of SCM440 steel is decreased by PWHT than as-welded. However, both Al anode generating current and anode weight loss were also increased by PWHT compared to as-welded when SCM400 steel is cathodically protected by Al anode.

  • PDF

Effect of Microstructure on the Corrosion Resistance of Nd-Fe-B Permanent Magnets

  • Li, Jiajie;Li, Wei;Li, Anhua;Zhao, Rui;Lai, Bin;Zhu, Minggang
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.304-307
    • /
    • 2011
  • High performance Nd-Fe-B magnets can be manufactured by both sintering and hot deformation. The corrosion behaviors of the magnets prepared by the two processes were compared. Effect of microstructure on the corrosion resistance of Nd-Fe-B magnets was also investigated. A neutral salt spray test (NSS) was performed for the different-processed magnets. The weight losses of the samples after the corrosion test were measured. The corrosion microstructures were observed using a scanning electron microscope. It shows that the corrosion resistance of hot deformed magnets is much better than that of the sintered ones because the grain size and the distribution of Nd-rich phases of the hot deformed magnets are much finer and more uniform than those of the sintered ones. The different microstructure between the sintered and the hot deformed magnets causes the different corrosion behavior.

Corrosion Behavior of Hard Coated Ti-Zr-N Film on the Tool Steels

  • Eun, Sang-Won;Choe, Han-Cheol
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.289-293
    • /
    • 2010
  • To investigate the corrosion behavior of tools steel surface in various coating film, the surface of hard coated Ti-Zr-N film on the tool steel by using magnetron-sputtering methods was researched using various experimental methods. STD 61 steels were manufactured by using vacuum furnace and solutionized for 1hr at $1050^{\circ}C$. Steel surface was coated with Ti-Zr-N film at $150^{\circ}C$ and 100W for 1h by using DC-sputtering equipment. Surface characteristics of Ti-Zr-N film coated specimens were investigated by OM, XRD, FE-SEM and nano-scratch tester. And corrosion behaviors of the coated specimen were investigated by polarization test and electrochemical impedance spectroscopy(EG&G Co, PARSTAT 2273. USA). It was found that Ti-Zr-N film coated sample had a thick coated layer and showed a good wear resistance and corrosion resistance of surface compared with ZrN and TiN coated sample. The corrosion resistance and mechanical property of Ti-Zr-N film coated STD 61 alloy increased as sputtering time increased.

Comparative Study of Corrosion Resistance of Organic Coating and Dry Coating on 304 Stainless Steels Used for Bipolar Plates in Polymer Electrolyte Membrane Fuel Cells (고분자전해질 연료전지 분리판용 304 스테인리스 강재의 유기습식 및 건식코팅에 따른 내식성 비교연구)

  • Yong Hyeon Kim;Jin Sung Park;Sung Jin Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.242-251
    • /
    • 2023
  • The electrochemical corrosion behaviors of 304 stainless steels (STSs) with various coatings (organic coating and dry coating) were examined, and their applicability as bipolar plates in polymer electrolyte membrane fuel cells (PEMFCs) was validated. The results showed that the organic-coated samples had a significant decrease in anodic and cathodic current density compared to the uncoated sample. However, an increase in carbon black content in the organic coating or additional heat treatment at 700 ℃ resulted in a decrease in corrosion resistance. In addition, improvements in corrosion resistance achieved by adding TiO2 powder to the organic coating were found to be limited. In contrast, dry coating with TiC and CrC exhibited higher corrosion potential, significantly lower current density, and reduced contact resistance compared to the organic coatings. Notably, the TiC-coated sample showed a comparatively lower current density and more stable behavior than the CrC-coated sample. Based on a series of experimental results, a thin TiC coating without defects is proposed as a promising surface treatment strategy for STS bipolar plates in PEMFC.