Browse > Article
http://dx.doi.org/10.14773/cst.2013.12.1.050

Corrosion Characteristics of Ti-xTa Alloys with Ta contents  

Kim, H.J. (Department of Dental Materials & Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University)
Choe, H.C. (Department of Dental Materials & Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University)
Publication Information
Corrosion Science and Technology / v.12, no.1, 2013 , pp. 50-55 More about this Journal
Abstract
The purpose of this study was to investigate corrosion characteristics of Ti-xTa alloys with Ta contents. Ti-xTa alloys used as samples (x=30, 40%) were arc-melted under argon atmosphere of 99.9% purity. Ti-xTa alloys were homogenized for 12hr at $1000^{\circ}C$ and then water quenched. The surface characteristics of Ti-xTa alloys were investigated using optical microscopy (OM) and X-ray diffractometer (XRD). The anodic corrosion behaviors of the specimens were examined through potentiodynamic, potentiostatic and galvanostatic test in 0.9 % NaCl solution at $36.5{\pm}1^{\circ}C$. After corrosion test, the surface characteristics of Ti-xTa alloys were investigated using OM. The microstructure of Ti-Ta alloy showed the beta structure with Ta content. The corrosion resistance of Ti alloy was improved by increasing Ta content and the corrosion morphology of Ti-Ta alloy showed that the site attacked by chloride ion decreased from the active to passive region with Ta content. Potential of Ti-40Ta alloy increased as time increased, whereas, current density of Ti-40Ta alloy decreased as time increased compared to Ti-30 alloy.
Keywords
Ti-Ta alloy; Ta content; potentiodynamic; potentiostatic; galvanostatic; biomaterial;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Black and G Hastings., Handbook of Biomaterial Properties. Champman & Hall 135, (1998).
2 F. Andress von Recum., Handbook of biomaterial Evaluation Tayor & Francis 1, (1999).
3 E. kobayashi, L. K. Gardner, R. W. Toth, J. Prosthetdent, 54, 410 (1985).
4 M. F. Semlitsch, H. Weber, R. M. Streicher, R. Schon, Biomaterials, 13, 781 (1992).   DOI   ScienceOn
5 Y. Okazaki, S. Rao, S.Asao, T. Tateishi, S. katsuda, Y. Furuki, J. Japan Inst. Metals, 9, 890 (1996).
6 A. K. shukla, R. Balasubramaniam, S. Bhargava, J. Alloys Comp, 389, 144 (2005).   DOI   ScienceOn
7 D. Kuroda, M. Niiomi, Mater. Sci. Eng, A 243, 244 (2001).
8 H. C. Choe, Thin solid Film 519, 4652 (2011).   DOI   ScienceOn
9 Y. L. Zhou, M. Niinomi, T. Akahori, Mater. Sci. Eng, A 384, 92 (2004).   DOI   ScienceOn
10 Y. L. Zhou, M. Niinomi, T. Akahori, Mater. Sci. Eng, A 371, 283 (2004).   DOI   ScienceOn
11 Y. L. Zhou, M. Niinomi, T. Akahori, H. fukui, H. Toda, Mater. Sci. Eng, A 398, 28 (2005).   DOI   ScienceOn
12 S. E. Kim, J. H. Son, Y. T. Hyun, H. W. Jeong, Y. T. Lee, J. S. Song, J. H. Lee, Met. Mater. Int., 13, 151 (2007).   DOI   ScienceOn
13 S. E. Kim, H. W. Jeong, Y. T. Hyun, Y. T. Lee, C. H. Jung, S. K. Kim, J. S. Song, J. H. Lee, Met. Mater. Int., 13, 145 (2007).   DOI   ScienceOn
14 Y. L. Zhou, M. Niinomi, Materials Sci. and Eng., A 29, 1061 (2009).   DOI   ScienceOn
15 D. Mareci, R. Chelariu, D. M.Gordin, G. Ungureanu, T. Gloriant, Acta Biomaterialia, 5, 3625 (2009).   DOI   ScienceOn