Effect of Isothermal annealing on the Corrosion Resistance of an Amorphous Alloy

비정질 합금의 부식저항성에 미치는 열처리의 영향

  • Shin, Sang-Soo (Department of Materials Science and Engineering, Korea University) ;
  • Lee, Chang-Myeon (Department of Materials Science and Engineering, Korea University) ;
  • Yang, Jae-Woong (Division of Advance Materials Science and Engineering, Daejin University) ;
  • Lee, Jae-Chul (Department of Materials Science and Engineering, Korea University)
  • 신상수 (고려대학교 신소재공학부) ;
  • 이창면 (고려대학교 신소재공학부) ;
  • 양재웅 (대진대학교 신소재공학과) ;
  • 이재철 (고려대학교 신소재공학부)
  • Received : 2007.10.08
  • Published : 2008.02.10

Abstract

This study examined the role of excess free volume on the corrosion resistance of an amorphous alloy. Corrosion behaviors were monitored on the amorphous alloys, of which amount of free volume was controlled via the isothermal annealing below the glass transition temperature, using immersion tests and potentiodynamic polarization tests in HCl aqueous solutions. It was found that the corrosion resistance of the amorphous alloy is improved by reducing the amount of excess free volume. The possible reason explaining the experimental result was discussed from the viewpoint of the internal energy associated with the annihilation of excess free volume.

Keywords

Acknowledgement

Supported by : 한국과학재단

References

  1. 1. Chun-Li Dai, Hua Guo, Yong Shen, Yi Li, En Ma, Jian Xu, Scripta Mater. 54, 1403 (2006). https://doi.org/10.1016/j.scriptamat.2005.11.077
  2. D. Xu, B. Lohwongwatana, G. Duan, W. L. Jhonson, and C. Garland, Acta Mater. 52, 2621 (2004). https://doi.org/10.1016/j.actamat.2004.02.009
  3. C. L. Qin , W. Zhang , K. Asami, H. Kimura , X. M. Wang, A. Inoue, Acta Mater. 54, 3713 (2006). https://doi.org/10.1016/j.actamat.2006.04.005
  4. A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, Acta Mater. 49, 2645 (2001). https://doi.org/10.1016/S1359-6454(01)00181-1
  5. Das J, Tang M. B. Kim K. B, Theissmann R, Baier F, Wang WH, Eckert, J. Phys. Rev. Lett. 94, 205501 (2005). https://doi.org/10.1103/PhysRevLett.94.205501
  6. O. J. Kwon, Y. C. Kim, Y. K. Lee and E. Fleury, Met. Mater. Inter. 12, 207 (2004).
  7. K. Asami, C. L. Qin, T. Zhang and A. Inoue, Mater. Sci. Eng. A. 375, 235 (2004). https://doi.org/10.1016/j.msea.2003.10.034
  8. M.K. Tam, C.H. Shek, Mat. Chemistry and Physics 100, 34 (2006). https://doi.org/10.1016/j.matchemphys.2005.12.002
  9. C. Qin, K. Asami, T. Zhang, W. Zhang, A. Inoue, Mater. Trans. 44, 749 (2003). https://doi.org/10.2320/matertrans.44.749
  10. M. K. Tam, S. J. Pang, C. H. Shek, J. Non-Crystal. Solids. 353, 3596 (2007). https://doi.org/10.1016/j.jnoncrysol.2007.05.119
  11. P. Murali, U. Ramamurty, Acta Mater. 53, 1467 (2005). https://doi.org/10.1016/j.actamat.2004.11.040
  12. A. Slipenyuk and J. Eckert, Scripta Mater. 50, 39 (2004). https://doi.org/10.1016/j.scriptamat.2003.09.038
  13. Masumoto, A. Inoue, A.P. Tsai and T. Masumoto, J. Non-Cryst. Solids. 86, 121 (1986). https://doi.org/10.1016/0022-3093(86)90482-5
  14. F. Spaepen, Acta Mater. 25, 407 (2005).
  15. A.S. Argon, Acta Metall. 27, 47 (1979). https://doi.org/10.1016/0001-6160(79)90055-5
  16. T. Egami, K. Maeda and V. Vitek, Phil. Mag. A. 41, 883 (1980). https://doi.org/10.1080/01418618008243894
  17. D. Suh and R. H. Dauskardt, J. Non-Cryst. Solids. 317, 181 (2003). https://doi.org/10.1016/S0022-3093(02)01997-X
  18. A. van den Beukel, and J. Sietsma, Acta Metall. 38, 383 (1990) https://doi.org/10.1016/0956-7151(90)90142-4
  19. C.A.C. Souza, F.S. Politi and C.S. Kiminami, Scripta Mater. 39, 329 (1998). https://doi.org/10.1016/S1359-6462(98)00159-6
  20. Qi-Kai Li, Mo Li, Appl. Phys. Lett. 88, 241903 (2006). https://doi.org/10.1063/1.2212059
  21. Yunfeng Shi and Michael L. Falk, Phys. Rev. B. 73, 214201 (2006). https://doi.org/10.1103/PhysRevB.73.214201