DOI QR코드

DOI QR Code

Comparative Study of Corrosion Resistance of Organic Coating and Dry Coating on 304 Stainless Steels Used for Bipolar Plates in Polymer Electrolyte Membrane Fuel Cells

고분자전해질 연료전지 분리판용 304 스테인리스 강재의 유기습식 및 건식코팅에 따른 내식성 비교연구

  • Yong Hyeon Kim (Department of Advanced Materials Science and Engineering, Sunchon National University) ;
  • Jin Sung Park (Department of Advanced Materials Science and Engineering, Sunchon National University) ;
  • Sung Jin Kim (Department of Advanced Materials Science and Engineering, Sunchon National University)
  • 김용현 (순천대학교 첨단신소재공학과) ;
  • 박진성 (순천대학교 첨단신소재공학과) ;
  • 김성진 (순천대학교 첨단신소재공학과)
  • Received : 2023.07.06
  • Accepted : 2023.08.01
  • Published : 2023.08.30

Abstract

The electrochemical corrosion behaviors of 304 stainless steels (STSs) with various coatings (organic coating and dry coating) were examined, and their applicability as bipolar plates in polymer electrolyte membrane fuel cells (PEMFCs) was validated. The results showed that the organic-coated samples had a significant decrease in anodic and cathodic current density compared to the uncoated sample. However, an increase in carbon black content in the organic coating or additional heat treatment at 700 ℃ resulted in a decrease in corrosion resistance. In addition, improvements in corrosion resistance achieved by adding TiO2 powder to the organic coating were found to be limited. In contrast, dry coating with TiC and CrC exhibited higher corrosion potential, significantly lower current density, and reduced contact resistance compared to the organic coatings. Notably, the TiC-coated sample showed a comparatively lower current density and more stable behavior than the CrC-coated sample. Based on a series of experimental results, a thin TiC coating without defects is proposed as a promising surface treatment strategy for STS bipolar plates in PEMFC.

Keywords

Acknowledgement

This research was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A2C4001255).

References

  1. C. Han, M. Choi, I. T. Kim, J. J. Lee, J. Y. Lee, J. C. An, J. Shim, and H. K. Lee, Manufacture and Evaluation of Small Size PEMFC Stack Using Carbon Composite Bipolar Plate, Journal of the Korean Electrochemical Society, 13, 81 (2010). Doi: https://doi.org/10.5229/jkes.2010.13.2.081
  2. C.M. Kim and K. Y. Kim, A study on economic analysis of new renewable energy power (photovoltaic, wind power, small hydro, biogas), Journal of the Korean Solar Energy Society, 28, 70 (2008). Doi: http://www.koreascience.or.kr/article/JAKO200819463917993.page
  3. A. Pozio, F. Zaza, A. Masci, and R. F. Silva, Bipolar plate materials for PEMFCs: a conductivity and stability study, Journal of Power Sources, 179, 631 (2008). Doi: https://doi.org/10.1016/j.jpowsour.2008.01.038
  4. T. Zhongfu, Z. Chen, L. Pingkuo, B. Reed, and Z. Jiayao, Focus on fuel cell systems in China, Renewable and Sustainable Energy Reviews, 47, 912 (2015). Doi: https://doi.org/10.1016/j.rser.2015.03.057
  5. D. H. Shin and S. J. Kim, Effects of Temperature and Chloride Concentration on Electrochemical Characteristics and Damage Behavior of 316L Stainless Steel for PEMFC Metallic Bipolar Plate, Corrosion Science and Technology, 21, 300 (2022). Doi: https://doi.org/10.14773/cst.2022.21.4.300
  6. N. G. Moreno, M. C. Molina, D. Gervasio, and J. F. P. Robles, Approaches to polymer electrolyte membrane fuel cells (PEMFCs) and their cost, Renewable and Sustainable Energy Reviews, 52, 897 (2015). Doi: https://doi.org/10.1016/j.rser.2015.07.157
  7. J. Wu, X. Z. Yuan, J.J. Martin, H. Wang, J. Zhang, J. Shen, S. Wu, and W. Merida, A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies, Journal of Power Sources, 184, 104 (2008). Doi: https://doi.org/10.1016/j.jpowsour.2008.06.006
  8. N. F. Asri, T. Husaini, A. B. Sulong, E. H. Majlan, and W. R. W. Dau, Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC: A review, International Journal of Hydrogen Energy, 42, 9135 (2017). Doi: https://doi.org/10.1016/j.ijhydene.2016.06.241
  9. S. Lee and S. H. Jin, Single Cell Performance Recovery of SO2 Poisioned PEMFC using Cyclic Voltametry, Journal of Korean Applied Science and Technology, 28, 497 (2011). Doi: https://doi.org/10.12925/jkocs.2011.28.4.15
  10. R. A. Antunes, M. C. L. Oliveira, G. Ett, and V. Ett, Corrosion of metal bipolar plates for PEM fuel cells: A review. International journal of hydrogen energy, 35, 3632 (2010). Doi: https://doi.org/10.1016/j.ijhydene.2010.01.059
  11. L. Peng, P. Yi, and X. Lai, Design and manufacturing of stainless steel bipolar plates for proton exchange membrane fuel cells, International Journal of Hydrogen Energy, 39, 21127 (2014). Doi: https://doi.org/10.1016/j.ijhydene.2014.08.113
  12. Y. K. Jung, Thesis, pp. 8 - 11, Pukyong National University, Busan (2022).
  13. K. Kang, S. Park, and H. Ju, Effects of type of graphite conductive filler on the performance of a composite bipolar plate for fuel cells, Solid State Ionics, 262, 332 (2014). Doi: https://doi.org/10.1016/j.ssi.2013.11.024
  14. S. Y. Cha and J. B. Lee, Effect of Pretreatments on Graphene Coated Bipolar Plate of PEMFC on Electrochemical, Corrosion Science and Technology, 13, 224 (2014). Doi: https://doi.org/10.14773/cst.2014.13.6.224
  15. L. Wang, D. O. Northwood, X. Nie, J. Housden, E. Spain, A. Leyland, and A. Matthews, Corrosion properties and contact resistance of TiN, TiAlN and CrN coatings in simulated proton exchange membrane fuel cell environments, Journal of Power Sources, 195, 3814 (2010). Doi: https://doi.org/10.1016/j.jpowsour.2009.12.127
  16. N. D. L. Heras, E. P. L. Roberts, R. Langton, and D. R. Hodgson, A review of metal separator plate materials suitable for automotive PEM fuel cells, Energy & Environmental Science, 2, 206 (2009). Doi: https://doi.org/10.1039/b813231n
  17. A. Kraytsberg, M. Auinat, and Y. Ein-Eli, Reduced contact resistance of PEM fuel cell's bipolar plates via surface texturing, Journal of Power Sources, 164, 697 (2007). Doi: https://doi.org/10.1016/j.jpowsour.2006.11.033
  18. B. Avasarala and P. Haldar, Effect of surface roughness of composite bipolar plates on the contact resistance of a proton exchange membrane fuel cell, Journal of Power Sources, 188, 225 (2009). Doi: https://doi.org/10.1016/j.jpowsour.2008.11.063
  19. D. P. Davies, P. L. Adcock, M. Turpin, and S. J. Rowen, Bipolar plate materials for solid polymer fuel cells, Journal of power sources, 86, 237 (2000). Doi: https://doi.org/ 10.1016/s0378-7753(99)00524-8
  20. D. Zhang, Z. Wang, and K. Huang, Composite coatings with in situ formation for Fe-Ni-Cr alloy as bipolar plate of PEMFC, International journal of hydrogen energy, 38, 11379 (2013). Doi: https://doi.org/10.1016/j.ijhydene.2013.06.112
  21. K. Feng, Z. Li, H. Sun, L. Yu, X. Cai, Y. Wu, and P. K. Chu, C/CrN multilayer coating for polymer electrolyte membrane fuel cell metallic bipolar plates, Journal of power sources, 222, 351 (2013). Doi: https://doi.org/10.1016/j.jpowsour.2012.08.087
  22. J. S. Kim, W. H. A. Peelen, K. Hemmes, and R. C. Makkus, Effect of alloying elements on the contact resistance and the passivation behaviour of stainless steels, Corrosion Science, 44, 635 (2002). Doi: https://doi.org/10.1016/s0010-938x(01)00107-x
  23. S. Y. Cha and J. B. Lee, Evaluation of Electrochemical Characteristics on Graphene Coated Austenitic and Martensitic Stainless Steels for Metallic Bipolar Plates in PEMFC Fabricated with Hydrazine Reduction Methods, Corrosion Science and Technology, 15, 92 (2016). Doi: https://doi.org/10.14773/cst.2016.15.2.92
  24. K. M. Kim and K. Y. Kim, A new alloy design concept for austenitic stainless steel with tungsten modification for bipolar plate application in PEMFC, Journal of Power Sources, 173, 917 (2007). Doi: https://doi.org/10.1016/j.jpowsour.2007.08.047
  25. K. Feng, Z. Li, C. Yao, and Y. Wu, Evaluation of Mg-Nd-Zn-Zr magnesium alloy as bipolar plate in simulated polymer electrolyte membrane fuel cell environments, International Journal of Hydrogen Energy, 41, 14191 (2016). Doi: https://doi.org/10.1016/j.ijhydene.2016.05.179
  26. J. Wind, R. Spah, W. Kaizer, and G. Bohm, Metallic bipolar plates for PEM fuel cells, Journal of Power Sources, 105, 256 (2002). Doi: https://doi.org/10.1016/S0378-7753(01)00950-8
  27. P. L. Hentall, J. B. Lakeman, G. O. Mepsted, P. L. Adocock, and J. M. Moore, New materials for polymer electrolyte membrane fuel cell current collectors, Journal of Power Sources, 80, 235 (1999). Doi: https://doi.org/10.1016/S0378-7753(98)00264-X
  28. S. H. Wang, J. Peng, W. B. Lui, and J. S. Zhang, Performance of the gold-plated titanium bipolar plates for the light weight PEM fuel cells, Journal of Power Sources, 162, 486 (2006). Doi: https://doi.org/10.1016/j.jpowsour.2006.06.084
  29. Y. Wang and D. O. Northwood, An investigation into polypyrrole-coated 316L stainless steel as a bipolar plate material for PEM fuel cells, Journal of Power Sources, 163, 500 (2006). Doi: https://doi.org/10.1016/j.jpowsour.2006.09.048
  30. Y. J. Ren, J. Chen, and C. L. Zeng, Corrosion protection of type 304 stainless steel bipolar plates of proton-exchange membrane fuel cells by doped polyaniline coating, Journal of Power Sources, 195, 1914 (2010). Doi: https://doi.org/10.1016/j.jpowsour.2009.10.003
  31. H. Xue, T. Wang, H. Huo, X. Fan, Z. Zhu, X. Pan, and J. He, In situ synthesis of graphene/carbon nanotube modified ordered mesoporous carbon as protective film of stainless steel bipolar plates for proton exchange membrane fuel cells, RSE Advances, 4, 57724 (2014). Doi: https://doi.org/10.1039/c4ra09939g
  32. H. Kahraman, I. Cevik, F. Dundar, and F. Ficici, The Corrosion Resistance Behaviors of Metallic Bipolar Plates for PEMFC Coated with Physical Vapor Deposition (PVD): An Experimental Study, Arabian Journal for Science and Engineering, 41, 1961 (2016). Doi: https://doi.org/10.1007/s13369-016-2058-x
  33. R. Tian, Chromium nitride/Cr coated 316L stainless steel as bipolar plate for proton exchange membrane fuel cell, Journal of Power Sources, 196, 1258 (2011). Doi: https://doi.org/10.1016/j.jpowsour.2010.08.028
  34. R. Rani, N. Kumar, D. D. Kumar, K. Panda, S. K. Srivastava, S. Dash, and A. K. Tyagi, Improvement in wear resistance of C+ ion implanted DC magnetron sputtered TiC film, Tribology International, 104, 121 (2016). Doi: https://doi.org/10.1016/j.triboint.2016.08.033
  35. T. J. Pan, Y. J. Dai, J. Jiang, J. H. Xiang, Q. Q. Yang, and Y. S. Li, Anti-corrosion performance of the conductive bilayer CrC/CrN coated 304SS bipolar plate in acidic environment, Corrosion Science, 206, 110495 (2002). Doi: https://doi.org/10.1016/j.corsci.2022.110495
  36. I. H. Oh, and J. B. Lee, Corrosion Behaviors of 316L Stainless Steel Bipolar Plate of PEMFC and Measurements of Interfacial Contact Resistance(ICR) between Gas Diffusion Layer(GDL) and Bipolar Plate, Corrosion Science and Technology, 9, 129 (2010). Doi: https://doi.org/10.14773/cst.2010.9.3.129
  37. Y. Wang and D. O. Northwood, Effect of substrate material on the corrosion of TiN-coated stainless steels in simulated anode and cathode environments of proton exchange membrane fuel cells, Journal of Power Sources, 191, 483 (2009). Doi: https://doi.org/10.1016/j.jpowsour.2009.02.029
  38. D. N. Staicipolus, The Role of Cementite in the Acidic Corrosion of Steel, Journal of The Electrochemical Society, 110, 1121 (1963). Doi: https://doi.org/10.1149/1.2425602
  39. E. H. Hwang, H. G. Seong, and S. J. Kim, Effect of Carbon Contents on Corrosion and Hydrogen Diffusion Behaviors of Ultra-Strong Steels for Automotive Applications, Korean Journal of Metals and Materials, 56, 570 (2018). Doi: http://dx.doi.org/10.3365/KJMM.2018.56.8.570
  40. V. Kain, K. Chandra, K. N. Adhe, and P. K. De, Effrct of cold work on tlow-temperature sensitization behavior of austenitic stainless steels, Journal of nuclear materials, 334, 115 (2004). Doi: https://doi.org/10.1016/j.jnucmat.2004.05.008
  41. C. T. Kwok, K. H. Lo, W. K. Chan, F. T. Cheng, and H. C. Man, Effect of laser surface melting on intergranular corrosion behaviour of aged austenitic and duplex stainless steels, Corrosion Science, 53, 1581 (2011). Doi: https://doi.org/10.1016/j.corsci.2011.01.048
  42. S. X. Lin, W. K. Bao, J. Gao, and J. B. Wang, Intergranular Corrosion of Austenitic Stainless Steel, Applied Mechanics and Materials, 229, 14 (2012). Doi: https://doi.org/10.4028/www.scientific.net/AMM.229-231.14
  43. D. S. Won and W. G. Lee, Improvement of Polycarbonate Properties by Coating of TiO2 and SiO2 Thin Film, Journal of Industrial and Engineering Chemistry, 25, 14 (2014). Doi: https://doi.org/10.14478/ace.2013.1095
  44. B. Beverskog, J. O. Carlsson, and A. D. Bauer, Corrosion properties of TiC films prepared by activated reactive evaporation, Surface and Coating Technology, 41, 221 (1990). Doi: https://doi.org/10.1016/0257-8972(90)90170-h
  45. V. Marimuthu, I. Dulac, and K. Kannoorpatti, Significance of Pourbaix diagrams to study the corrosion behavior of hardfacing alloys based on chromium carbides at 298 K (25 ℃), Journal of Bio- and Tribo-Corrosion, 2, 17 (2016). Doi: https://doi.org/10.1007/s40735-016-0047-y
  46. J. W. Kang, J. M. Park, S. H. Hwang, S. H. Lee, K. M. Moon, and M. H. Lee, Influence of Heat Treatment and Magnesium Content on Corrosion Resistance of Al-Mg Coated Steel Sheet, Journal of Surface Science and Engineering, 49, 202 (2016). Doi: https://doi.org/10.5695/jkise.2016.49.2.202
  47. J. Shi, P. Zhang, Y. Han, H. Wang, X. Wang Y. Yu, and J. Sun, Investigation on electrochemical behavior and surface conductivity of titanium carbide modified Ti bipolar plate of PEMFC, International Journal of Hydrogen Energy, 45, 10050 (2020). Doi: https://doi.org/10.1016/j.ijhydene.2020.01.203
  48. W. Meng, H. Zhu, X. Wang, G. Li, Y. Fan, D. Sun, and F. Kong, Electrochemical Behavior and Surface Conductivity of C/TiC Nanocomposite Coating on Titanium for PEMFC Bipolar Plate, Metals, 12, 771 (2022). Doi: https://doi.org/10.3390/met12050771
  49. J. Li, Z. Xu, Y. Li, X. Ma, J. Mo, L. Weng, and C. Liu, Intergranular passivation of the TiC coating for enhancing corrosion resistance and surface conductivity in stainless-steel bipolar plates, Journal of Materials Science, 56, 8689 (2021). Doi: https://doi.org/10.1007/s10853-020-05733-w
  50. Y. J. Ren and C. L. Zeng, Corrosion protection of 304 stainless steel bipolar plates using TiC films produced by high-energy micro-arc alloying process, Journal of Power Sources, 171, 778 (2007). Doi: https://doi.org/10.1016/j.jpowsour.2007.06.075