Browse > Article

Effect of Isothermal annealing on the Corrosion Resistance of an Amorphous Alloy  

Shin, Sang-Soo (Department of Materials Science and Engineering, Korea University)
Lee, Chang-Myeon (Department of Materials Science and Engineering, Korea University)
Yang, Jae-Woong (Division of Advance Materials Science and Engineering, Daejin University)
Lee, Jae-Chul (Department of Materials Science and Engineering, Korea University)
Publication Information
Korean Journal of Metals and Materials / v.46, no.2, 2008 , pp. 53-57 More about this Journal
Abstract
This study examined the role of excess free volume on the corrosion resistance of an amorphous alloy. Corrosion behaviors were monitored on the amorphous alloys, of which amount of free volume was controlled via the isothermal annealing below the glass transition temperature, using immersion tests and potentiodynamic polarization tests in HCl aqueous solutions. It was found that the corrosion resistance of the amorphous alloy is improved by reducing the amount of excess free volume. The possible reason explaining the experimental result was discussed from the viewpoint of the internal energy associated with the annihilation of excess free volume.
Keywords
amorphous alloys; corrosion resistance; free volume; structural relaxation;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 1. Chun-Li Dai, Hua Guo, Yong Shen, Yi Li, En Ma, Jian Xu, Scripta Mater. 54, 1403 (2006).   DOI   ScienceOn
2 O. J. Kwon, Y. C. Kim, Y. K. Lee and E. Fleury, Met. Mater. Inter. 12, 207 (2004).
3 M. K. Tam, S. J. Pang, C. H. Shek, J. Non-Crystal. Solids. 353, 3596 (2007).   DOI   ScienceOn
4 A. Slipenyuk and J. Eckert, Scripta Mater. 50, 39 (2004).   DOI   ScienceOn
5 F. Spaepen, Acta Mater. 25, 407 (2005).
6 Das J, Tang M. B. Kim K. B, Theissmann R, Baier F, Wang WH, Eckert, J. Phys. Rev. Lett. 94, 205501 (2005).   DOI   ScienceOn
7 Masumoto, A. Inoue, A.P. Tsai and T. Masumoto, J. Non-Cryst. Solids. 86, 121 (1986).   DOI   ScienceOn
8 D. Suh and R. H. Dauskardt, J. Non-Cryst. Solids. 317, 181 (2003).   DOI   ScienceOn
9 A.S. Argon, Acta Metall. 27, 47 (1979).   DOI   ScienceOn
10 C.A.C. Souza, F.S. Politi and C.S. Kiminami, Scripta Mater. 39, 329 (1998).   DOI   ScienceOn
11 A. van den Beukel, and J. Sietsma, Acta Metall. 38, 383 (1990)   DOI   ScienceOn
12 P. Murali, U. Ramamurty, Acta Mater. 53, 1467 (2005).   DOI   ScienceOn
13 Qi-Kai Li, Mo Li, Appl. Phys. Lett. 88, 241903 (2006).   DOI   ScienceOn
14 D. Xu, B. Lohwongwatana, G. Duan, W. L. Jhonson, and C. Garland, Acta Mater. 52, 2621 (2004).   DOI   ScienceOn
15 C. L. Qin , W. Zhang , K. Asami, H. Kimura , X. M. Wang, A. Inoue, Acta Mater. 54, 3713 (2006).   DOI   ScienceOn
16 M.K. Tam, C.H. Shek, Mat. Chemistry and Physics 100, 34 (2006).   DOI   ScienceOn
17 A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, Acta Mater. 49, 2645 (2001).   DOI   ScienceOn
18 C. Qin, K. Asami, T. Zhang, W. Zhang, A. Inoue, Mater. Trans. 44, 749 (2003).   DOI   ScienceOn
19 T. Egami, K. Maeda and V. Vitek, Phil. Mag. A. 41, 883 (1980).   DOI
20 K. Asami, C. L. Qin, T. Zhang and A. Inoue, Mater. Sci. Eng. A. 375, 235 (2004).   DOI   ScienceOn
21 Yunfeng Shi and Michael L. Falk, Phys. Rev. B. 73, 214201 (2006).   DOI   ScienceOn