• 제목/요약/키워드: core/shell type

검색결과 131건 처리시간 0.025초

InP/ZnS Core/shell as Emitting Layer for Quantum Dot LED

  • Kwon, Byoung-Wook;Son, Dong-Ick;Lee, Bum-Hee;Park, Dong-Hee;Lim, Ki-Pil;Woo, Kyoung-Ja;Choi, Heon-Jin;Choi, Won-Kook
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.451-451
    • /
    • 2012
  • Instead of a highly toxic CdSe and ZnScore-shell,InP/ZnSecore-shell quantum dots [1,2] were investigated as an active material for quantum dot light emitting diode (QD-LED). In this paper, aquantum dot light-emitting diode (QDLED), consisting of a InP/ZnS core-shell type materials, with the device structure of glass/indium-tin-oxide (ITO)/PEDOT:PSS/Poly-TPD/InP-ZnS core-shell quantum dot/Cesium carbonate(CsCO3)/Al was fabricated through a simple spin coating technique. The resulting InP/ZnS core-shell QDs, emitting near blue green wavelength, were more efficient than the above CdSe QDs, and their luminescent properties were comparable to those of CdSe QDs.Thebrightness ofInP/ZnS QDLED was maximumof 179cd/m2.

  • PDF

입자 내 조성 변화가 수분산성 아크릴 에멀젼 점착제의 점착 물성과 수분산성에 미치는 영향 (Effects of Intra-particle Composition on the Adhesive Properties and Water Dispersity of Water Dispersible Acrylic Emulsion Pressure Sensitive Adhesive)

  • 서인선;이명천
    • 공업화학
    • /
    • 제18권5호
    • /
    • pp.444-448
    • /
    • 2007
  • 수분산성 점착제의 점착 물성과 수분산성에 미치는 입자 내 조성의 영향을 알아보기 위하여 다양한 입자 내 조성을 갖는 아크릴계 에멀젼형 점착제를 제조하여 각각의 점착 물성과 수분산성을 조사하였다. 입자 내 단일 조성을 갖는 경우 유지력과 수분산성을 동시에 만족시키기 어려웠으나 입자 내 조성을 hard core/soft shell 형태를 갖게 함으로써 수분산성은 적게 희생하고 유지력을 높일 수 있었다. 또한 메타크릴산/아크릴산(MAA/AA)의 중량비가 4/1인 경우에는 친수성 물질인(AA+MAA) 함량이 core로 갈수록 많은 경우와 shell로 갈수록 많은 경우 모두 유지력은 크게 상승했으나 초기점착력은 크게 낮아졌으며 수분산성은 거의 관찰되지 않았다. 그러나 MAA/AA 중량비가 1/4인 경우는 shell 부분에 (AA+MAA) 함량이 많은 경우에 수분산성이 더 컸으나 유지력은 상대적으로 적게 나타났다.

Development of pH-Responsive Core-Shell Microcapsule Reactor

  • Akamatsu, Kazuki;Yamaguchi, Takeo
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2004년도 Proceedings of the second conference of aseanian membrane society
    • /
    • pp.191-194
    • /
    • 2004
  • A novel type of intelligent microcapsule reactor system was prepared. The reactor can recognize pH change in the medea and control reaction rate by itself. For the reactor system, acrylic acid (AA), N-isopropylacrylamide (NIPAM), and glucose oxidase (GOD) were selected as a pH-responsive device, a gating device according and a reaction device, respectively. Poly(NIPAM-co-AA) (P-NIPAM-co-AA) are known to change its hydrophilicity-hydrophobicity due to pH change. They were integrated in a core-shell microcapsule space. GOD was loaded inside the core space and the pores in the outside shell layer were filled with P-NIPAM-co-AA linear grafted chains as pH-responsive gates by plasma graft filling polymerization method. When P-NIPAM-co-AA gates are hydrophilic at high pH value, this microcapsule permits glucose penetration into the core space and GOD reaction proceeds. However, when P-NIPAM-co-AA gates are hydrophobic at low pH value, this microcapsule forbids glucose penetration and GOD reaction will not occur. The accuracy of this concept was examined.

  • PDF

코아-쉘 마이크로 캡슐을 이용한 기능성 샴푸의 제조 및 응용 (Preparation and application of the functionalized Shampoo with core-shell microcapsule)

  • 서미영;김은지;김인경;최성호
    • 미래기술융합논문지
    • /
    • 1권1호
    • /
    • pp.7-13
    • /
    • 2022
  • 본 연구는 3종의 기능성 마이크로 캡슐을 제조하고 이 기능성 마이크로 캡슐을 이용하여 기능성 샴푸를 제조하였다. 구체적으로는 (1) 코아-멘톨, 쉘-멜라민 수지로 제조로 된 기능성 마이크로 캡슐, (2) 코아-멘톨, 쉘-레시틴, (3) 코아-시나몬 오일, 쉘-레시틴로 합성한 기능성 마이크로 캡슐이다. 제조한 기능성 마이크로 캡슐의 크기 및 형태 평가는 광학현미경, SEM 및 DLS를 통해 수행한 결과 0.1~0.2 ㎛의 크기와 원형형태의 마이크로 캡슐임을 확인할 수 있었다. 따라서, 제조된 기능성 마이크로캡슐을 이용하여 기능성 샴푸를 제조하고, 이 제조된 기능성 샴푸를 직접 사용하여 두피 온도를 측정한 결과, 두피 온도가 3~4 ℃ 떨어지는 사실을 알 수 있었다. 이는 코아 물질이 휘발하면서 나타나는 현상으로 예측된다. 추후, 기능성 샴푸의 인체 사용 시 두피의 모공 변화 등을 측정할 예정이다.

Si-core/SiGe-shell channel nanowire FET for sub-10-nm logic technology in the THz regime

  • Yu, Eunseon;Son, Baegmo;Kam, Byungmin;Joh, Yong Sang;Park, Sangjoon;Lee, Won-Jun;Jung, Jongwan;Cho, Seongjae
    • ETRI Journal
    • /
    • 제41권6호
    • /
    • pp.829-837
    • /
    • 2019
  • The p-type nanowire field-effect transistor (FET) with a SiGe shell channel on a Si core is optimally designed and characterized using in-depth technology computer-aided design (TCAD) with quantum models for sub-10-nm advanced logic technology. SiGe is adopted as the material for the ultrathin shell channel owing to its two primary merits of high hole mobility and strong Si compatibility. The SiGe shell can effectively confine the hole because of the large valence-band offset (VBO) between the Si core and the SiGe channel arranged in the radial direction. The proposed device is optimized in terms of the Ge shell channel thickness, Ge fraction in the SiGe channel, and the channel length (Lg) by examining a set of primary DC and AC parameters. The cutoff frequency (fT) and maximum oscillation frequency (fmax) of the proposed device were determined to be 440.0 and 753.9 GHz when Lg is 5 nm, respectively, with an intrinsic delay time (τ) of 3.14 ps. The proposed SiGe-shell channel p-type nanowire FET has demonstrated a strong potential for low-power and high-speed applications in 10-nm-and-beyond complementary metal-oxide-semiconductor (CMOS) technology.

Fabrication of Visible-Light Sensitized ZnTe/ZnSe (Core/Shell) Type-II Quantum Dots

  • Kim, Misung;Bang, Jiwon
    • 한국세라믹학회지
    • /
    • 제55권5호
    • /
    • pp.510-514
    • /
    • 2018
  • Colloidal semiconductor quantum dots (QDs), because of the novel optical and electrical properties that stem from their three-dimensional confinement, have attracted great interest for their potential applications in such fields as bio-imaging, display, and opto-electronics. However, many semiconductors that can be exploited for QD applications contain toxic elements. Herein, we synthesized non-toxic ZnTe/ZnSe (core/shell) type-II QDs by pyrolysis method. Because of the unique type-II character of these QDs, their emission can range over an extended wavelength regime, showing photoluminescence (PL) from 450 nm to 580 nm. By optimizing the ZnSe shell growth condition, resulting ZnTe/ZnSe type-II QDs shows PL quantum yield up to ~ 25% with 35 nm PL bandwidth. Using a simple two step cation exchange reaction, we also fabricated ZnTe/ZnSe type-II QDs with absorption extended over the whole visible region. The visible-light sensitized heavy metal free ZnTe/ZnSe type-II QDs can be relevant for opto-electronic applications such as displays, light emitting diodes, and bio-imaging probes.

비대칭 3상 선로에서 변압기의 철심구조별 문제점 분석 및 방지대책 (Problem Analysis by Iron Core Structure of the Transformer on Asymmetric three Phase lines and Prevention Measures)

  • 신동열;윤동현;차한주
    • 전기학회논문지
    • /
    • 제61권10호
    • /
    • pp.1536-1541
    • /
    • 2012
  • The study analyzed problems by iron core structure of the three phased transformer on asymmetric three phase lines, which included line disconnections, ground faults, COS OFF, and unbalanced loads on the power distribution system. In particular, by analyzing PT combustion cases within the MOF, the study was able to analyze the combustion cause of the core-type transformer and its effect on the system, conduct simulations and practice demonstrations on the characteristics for each iron core structure of the three phase transformer using PSCAD/EMTDC, and suggest measures to prevent the combustion of the core-type transformer.

Synthesis of Core@shell Structured CuFeS2@TiO2 Magnetic Nanomaterial and Its Application for Hydrogen Production by Methanol Aqueous Solution Photosplitting

  • Kang, Sora;Kwak, Byeong Sub;Park, Minkyu;Jeong, Kyung Mi;Park, Sun-Min;Kang, Misook
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권9호
    • /
    • pp.2813-2817
    • /
    • 2014
  • A new magnetic semiconductor material was synthesized to enable separation after a liquid-type photocatalysis process. Core@shell-structured $CuFeS_2@TiO_2$ magnetic nanoparticles were prepared by a combination of solvothermal and wet-impregnation methods for photocatalysis applications. The materials obtained were characterized using X-ray diffraction, transmission electron microscopy, ultraviolet-visible, photoluminescence spectroscopy, Brunauer-Emmett-Teller surface area measurements, and cyclic voltammetry. This study confirmed that the light absorption of $CuFeS_2$ was shifted significantly to the visible wavelength compared to pure $TiO_2$. Moreover, the resulting hydrogen production from the photo-splitting methanol/water solution after 10 hours was more than 4 times on the core@shell structured $CuFeS_2@TiO_2$ nanocatalyst than on either pure $TiO_2$ or $CuFeS_2$.

Vertically Aligned WO3-CuO Core-Shell Nanorod Arrays for Ultrasensitive NH3 Detection

  • Yan, Wenjun;Hu, Ming
    • Nano
    • /
    • 제13권10호
    • /
    • pp.1850122.1-1850122.6
    • /
    • 2018
  • Vertically aligned $WO_3$-CuO core-shell nanorod arrays for $NH_3$ sensing are prepared. The sensor is fabricated by preparing $WO_3$-CuO nanorod arrays directly on silicon wafer with interdigital Pt electrodes. The $WO_3$-CuO nanorod arrays are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The sensor based on the vertically aligned $WO_3$-CuO nanorod arrays exhibits ultrasensitive $NH_3$ detection, indicating p-type behavior. The optimum sensing temperature is found to be about $150^{\circ}C$. Both response and recovery time to $NH_3$ ranging from 50 ppm to 500 ppm are around 10-15 s. A possible $NH_3$ sensing mechanism of the vertically aligned hybrid nanorod arrays is proposed.

Numerical comparison between lattice and honeycomb core by using detailed FEM modelling

  • Giuseppe, Pavano
    • Advances in aircraft and spacecraft science
    • /
    • 제9권5호
    • /
    • pp.377-400
    • /
    • 2022
  • The aim of this work is a numerical comparison (FEM) between lattice pyramidal-core panel and honeycomb core panel for different core thicknesses. By evaluating the mid-span deflection, the shear rigidity and the shear modulus for both core types and different core thicknesses, it is possible to define which core type has got the best mechanical behaviour for each thickness and the evolution of that behaviour as far as the thickness increases. Since a specific base geometry has been used for the lattice pyramidal core, the comparison gives us the opportunity to investigate the unit cell strut angle giving the higher mechanical properties. The presented work considers a detailed FEM modelling of a standard 3-point bending test (ASTM C393/C393M Standard Practice). Detailed FEM modelling addresses to detailed discretization of cores by means of beam elements for lattice core and shell elements for honeycomb core. Facings, instead, have been modelled by using shell elements for both sandwich panels. On lattice core structure, elements of core and facings are directly connected, to better simulate the additive manufacturing process. Otherwise, an MPC-based constraint between facings and core has been used for honeycomb core structure. Both sandwich panels are entirely built of Aluminium alloy. Prior to compare the two models, the FEM sandwich panel model with lattice pyramidal core needs to be validated with 3-point bending test experimental results, in order to ensure a good reliability of the FEM approach and of the comparison. Furthermore, the analytical validation has been performed according to Allen's theory. The FEM analysis is linear static with an increasing midspan load ranging from 50N up to 500N.