Browse > Article
http://dx.doi.org/10.4191/kcers.2018.55.5.11

Fabrication of Visible-Light Sensitized ZnTe/ZnSe (Core/Shell) Type-II Quantum Dots  

Kim, Misung (Electronic Conversion Materials Division, Korea Institute of Ceramic Engineering and Technology)
Bang, Jiwon (Electronic Conversion Materials Division, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Abstract
Colloidal semiconductor quantum dots (QDs), because of the novel optical and electrical properties that stem from their three-dimensional confinement, have attracted great interest for their potential applications in such fields as bio-imaging, display, and opto-electronics. However, many semiconductors that can be exploited for QD applications contain toxic elements. Herein, we synthesized non-toxic ZnTe/ZnSe (core/shell) type-II QDs by pyrolysis method. Because of the unique type-II character of these QDs, their emission can range over an extended wavelength regime, showing photoluminescence (PL) from 450 nm to 580 nm. By optimizing the ZnSe shell growth condition, resulting ZnTe/ZnSe type-II QDs shows PL quantum yield up to ~ 25% with 35 nm PL bandwidth. Using a simple two step cation exchange reaction, we also fabricated ZnTe/ZnSe type-II QDs with absorption extended over the whole visible region. The visible-light sensitized heavy metal free ZnTe/ZnSe type-II QDs can be relevant for opto-electronic applications such as displays, light emitting diodes, and bio-imaging probes.
Keywords
ZnTe/ZnSe; Quantum dots; Optical properties; Nanocomposites;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. B. Jr, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, "Semiconductor Nanocrystals as Fluorescent Biological Labels," Science, 281 [5385] 2013-16 (1998).   DOI
2 J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, "Full Color Emission from II-VI Semiconductor Quantum Dot-Polymer Composites," Adv. Mater., 12 [15] 1102-05 (2000).   DOI
3 Y. Jiang, S. Y. Cho, and M. Shim, "Light-Emitting Diodes of Colloidal Quantum Dots and Nanorod Heterostructures for Future Emissive Displays," J. Mater. Chem. C, 6 [11] 2618-34 (2018).   DOI
4 T. T. Xuan, J. Q. Liu, C. Y. Yu, R. J. Xie, and H. L. Li, "Facile Synthesis of Cadmium-Free Zn-In-S:Ag/ZnS Nanocrystals for Bio-Imaging," Sci. Rep., 6 24459 (2016).   DOI
5 R. Liu, B. P. Bloom, D. H. Waldeck, P. Zhang, and D. N. Beratan, "Improving Solar Cell Performance Using Quantum Dot Triad Charge-Separation Engines," J. Phys. Chem. C, 122 [11] 5924-34 (2018).   DOI
6 K. S. Cho, K. Heo, C. W. Baik, J. Y. Choi, H. Jeong, S. Hwang, and S. Y. Lee, "Color-Selective Photodetection from Intermediate Colloidal Quantum Dots Buried in Amorphous-Oxide Semiconductors," Nat. Commun., 8 [1] 840 (2017).   DOI
7 P. T. Snee, R. C. Somers, G. Nair, J. P. Zimmer, M. G. Bawendi, and D. G. Nocera, "A Ratiometric CdSe/ZnS Nanocrystal pH Sensor," J. Am. Chem. Soc., 128 [41] 13320-21 (2006).   DOI
8 X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, "Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics," Science, 307 [5709] 538-44 (2005).   DOI
9 M. Danek, K. F. Jensen, C. B. Murray, and M. G. Bawendi, "Synthesis of Luminescent Thin-Film CdSe/ZnSe Quantum Dot Composites Using CdSe Quantum Dots Passivated with an Overlayer of ZnSe," Chem. Mater., 8 [1] 173-80 (1996).   DOI
10 B. Xing, W. Li, X. Wang, H. Dou, L. Wang, K. Sun, X. He, J. Han, H. Xiao, J. Miao, and Y. Li, "Highly-Fluorescent Alloyed Quantum Dots of $CdSe_{1-x}Te_x$ Synthesized in Paraffin Liquid: Gradient Structure and Promising Bio-Application," J. Mater. Chem., 20 [27] 5664-74 (2010.)   DOI
11 C. Lincheneau, M. Amelia, M. Oszajca, A. Boccia, F. D'Orazi, M. Madrigale, R. Zanoni, R. Mazzaro, L. Ortolani, V. Morandi, S. Silvi, K. Szaciłowski, and A. Credi, "Synthesis and Properties of ZnTe and ZnTe/ZnS Core/Shell Semiconductor Nanocrystals," J. Mater. Chem. C, 2 [6] 2877-86 (2014).   DOI
12 W. Shen, H. Tang, X. Yang, Z. Cao, T. Cheng, X. Wang, Z. Tan, J. You, and Z. Deng, "Synthesis of Highly Fluorescent InP/ZnS Small-Core/Thick-Shell Tetrahedral-Shaped Quantum Dots for Blue Light-Emitting Diodes," J. Mater. Chem. C, 5 [32] 8243-49 (2017).   DOI
13 J. Zhang; J. Wang, T. Yan, Y. Peng, D. Xu, and D. Deng, "InP/ZnSe/ZnS Quantum Dots with Strong Dual Emissions: Visible Excitonic Emission and Near-Infrared Surface Defect Emission and their Application in in vitro and in vivo Bioimaging," J. Mater. Chem. B, 5 [41] 8152-60 (2017).   DOI
14 J. Bang, B. Chon, N. Won, J. Nam, T. Joo, and S. Kim, "Spectral Switching of Type-II Quantum Dots by Charging," J. Phys. Chem. C, 113 [16] 6320-23 (2009).   DOI
15 E. Bang, Y. Choi, J. Cho, Y. H. Suh, H. W. Ban, J. S. Son, and J. Park, "Large-Scale Synthesis of Highly Luminescent InP@ZnS Quantum Dots Using Elemental Phosphorus Precursor," Chem. Mater., 29 [10] 4236-43 (2017).   DOI
16 H. Li, R. Brescia, R. Krahne, G. Bertoni, M. J. P. Alcocer, C. D'Andrea, F. Scotognella, F. Tassone, M. Zanella, M. De Giorgi, and L. Manna, "Blue-UV-Emitting ZnSe(Dot)/ZnS(Rod) Core/Shell Nanocrystals Prepared from CdSe/CdS Nanocrystals by Sequential Cation Exchange," ACS Nano, 6 [2] 1637-47 (2012).   DOI
17 S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, "Chemistry of InP Nanocrystal Syntheses," Chem. Mater., 28 [8] 2491-506 (2016).   DOI
18 J. Bang, J. Park, J. H. Lee, N. Won, J. Nam, J. Lim, B. Y. Chang, H. J. Lee, B. Chon, J. Shin, J. B. Park, J. H. Choi, K. Cho, S. M. Park, T. Joo, and S. Kim, "ZnTe/ZnSe (Core/Shell) Type-II Quantum Dots: their Optical and Photovoltaic Properties," Chem. Mater., 22 [1] 233-40 (2010).   DOI
19 Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov and J. A. Hollingsworth, " "Giant" Multishell CdSe Nanocrystal Quantum Dots with Suppressed Blinking," J. Am. Chem. Soc., 130 [15] 5026-27 (2008).   DOI
20 W. H. Zhang, J. L. Shi, L. Z. Wang, and D. S. Yan, "Preparation and Characterization of ZnO Clusters inside Mesoporous Silica," Chem. Mater., 12 [5] 1408-13 (2000).   DOI
21 J. Y. Woo, J. H. Ko, J. H. Song, K. Kim, H. Choi, Y. H. Kim, D. C. Lee, and S. Jeong, "Ultrastable PbSe Nanocrystal Quantum Dots via in Situ Formation of Atomically Thin Halide Adlayers on PbSe(100)," J. Am. Chem. Soc., 136 [25] 8883-86 (2014).   DOI
22 Y. C. Shih and F. G. Shi, "Quantum Dot Based Enhancement or Elimination of Color Filters for Liquid Crystal Display," IEEE J. Sel. Top. Quantum Electron., 23 [5] 1-4 (2017).
23 R. C. Page, D. Espinobarro-Velazquez, M. A. Leontiadou, C. Smith, E. A. Lewis, S. J. Haigh, C. Li, H. Radtke, A. Pengpad, F. Bondino, E. Magnano, I. Pis, W. R. Flavell, P. O'Brien, and D. J. Binks, "Near-Unity Quantum Yields from Chloride Treated CdTe Colloidal Quantum Dots," Small, 11 [13] 1548-54 (2015).   DOI