• Title/Summary/Keyword: copula functions

Search Result 20, Processing Time 0.023 seconds

VaR Estimation with Multiple Copula Functions (다차원 Copula 함수를 이용한 VaR 추정)

  • Hong, Chong-Sun;Lee, Won-Yong
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.5
    • /
    • pp.809-820
    • /
    • 2011
  • VaR(Value at risk) is a measure of market risk management and needs to be estimated for multiple distributions. In this paper, Copula functions are used to generate distributions of multivariate random variables. The dependence structure of random variables is classified by the exchangeable Copula, fully nested Copula, partially nested Copula. For the earning rate data of four Korean industries, the parameters of the Archimedean Copula functions including Clayton, Gumbel and Frank Copula are estimated by using three kinds of dependence structure. These Copula functions are then fitted to to the data so that corresponding VaR are obtained and explored.

VaR Estimation of Multivariate Distribution Using Copula Functions (Copula 함수를 이용한 이변량분포의 VaR 추정)

  • Hong, Chong-Sun;Lee, Jae-Hyung
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.3
    • /
    • pp.523-533
    • /
    • 2011
  • Most nancial preference methods for market risk management are to estimate VaR. In many real cases, it happens to obtain the VaRs of the univariate as well as multivariate distributions based on multivariate data. Copula functions are used to explore the dependence of non-normal random variables and generate the corresponding multivariate distribution functions in this work. We estimate Archimedian Copula functions including Clayton Copula, Gumbel Copula, Frank Copula that are tted to the multivariate earning rate distribution, and then obtain their VaRs. With these Copula functions, we estimate the VaRs of both a certain integrated industry and individual industries. The parameters of three kinds of Copula functions are estimated for an illustrated stock data of two Korean industries to obtain the VaR of the bivariate distribution and those of the corresponding univariate distributions. These VaRs are compared with those obtained from other methods to discuss the accuracy of the estimations.

Multivariate CTE for copula distributions

  • Hong, Chong Sun;Kim, Jae Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.421-433
    • /
    • 2017
  • The CTE (conditional tail expectation) is a useful risk management measure for a diversified investment portfolio that can be generally estimated by using a transformed univariate distribution. Hong et al. (2016) proposed a multivariate CTE based on multivariate quantile vectors, and explored its characteristics for multivariate normal distributions. Since most real financial data is not distributed symmetrically, it is problematic to apply the CTE to normal distributions. In order to obtain a multivariate CTE for various kinds of joint distributions, distribution fitting methods using copula functions are proposed in this work. Among the many copula functions, the Clayton, Frank, and Gumbel functions are considered, and the multivariate CTEs are obtained by using their generator functions and parameters. These CTEs are compared with CTEs obtained using other distribution functions. The characteristics of the multivariate CTEs are discussed, as are the properties of the distribution functions and their corresponding accuracy. Finally, conclusions are derived and presented with illustrative examples.

A Copula method for modeling the intensity characteristic of geotechnical strata of roof based on small sample test data

  • Jiazeng Cao;Tao Wang;Mao Sheng;Yingying Huang;Guoqing Zhou
    • Geomechanics and Engineering
    • /
    • v.36 no.6
    • /
    • pp.601-618
    • /
    • 2024
  • The joint probability distribution of uncertain geomechanical parameters of geotechnical strata is a crucial aspect in constructing the reliability functional function for roof structures. However, due to the limited number of on-site exploration and test data samples, it is challenging to conduct a scientifically reliable analysis of roof geotechnical strata. This study proposes a Copula method based on small sample exploration and test data to construct the intensity characteristics of roof geotechnical strata. Firstly, the theory of multidimensional copula is systematically introduced, especially the construction of four-dimensional Gaussian copula. Secondly, data from measurements of 176 groups of geomechanical parameters of roof geotechnical strata in 31 coal mines in China are collected. The goodness of fit and simulation error of the four-dimensional Gaussian Copula constructed using the Pearson method, Kendall method, and Spearman methods are analyzed. Finally, the fitting effects of positive and negative correlation coefficients under different copula functions are discussed respectively. The results demonstrate that the established multidimensional Gaussian Copula joint distribution model can scientifically represent the uncertainty of geomechanical parameters in roof geotechnical strata. It provides an important theoretical basis for the study of reliability functional functions for roof structures. Different construction methods for multidimensional Gaussian Copula yield varying simulation effects. The Kendall method exhibits the best fit in constructing correlations of geotechnical parameters. For the bivariate Copula fitting ability of uncertain parameters in roof geotechnical strata, when the correlation is strong, Gaussian Copula demonstrates the best fit, and other Copula functions also show remarkable fitting ability in the region of fixed correlation parameters. The research results can offer valuable reference for the stability analysis of roof geotechnical engineering.

Tail dependence of Bivariate Copulas for Drought Severity and Duration

  • Lee, Tae-Sam;Modarres, Reza;Ouarda, Taha B.M.J.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.571-575
    • /
    • 2010
  • Drought is a natural hazard with different properties that are usually dependent to each other. Therefore, a multivariate model is often used for drought frequency analysis. The Copula based bivariate drought severity and duration frequency analysis is applied in the current study in order to show the effect of tail behavior of drought severity and duration on the selection of a copula function for drought bivariate frequency analysis. Four copula functions, namely Clayton, Gumbel, Frank and Gaussian, were fitted to drought data of four stations in Iran and Canada in different climate regions. The drought data are calculated based on standardized precipitation index time series. The performance of different copula functions is evaluated by estimating drought bivariate return periods in two cases, [$D{\geq}d$ and $S{\geq}s$] and [$D{\geq}d$ or $S{\geq}s$]. The bivariate return period analysis indicates the behavior of the tail of the copula functions on the selection of the best bivariate model for drought analysis.

  • PDF

DIGITAL OPTION PRICING BASED ON COPULAS WITH STOCHASTIC SIMULATION

  • KIM, M.S.;KIM, SEKI
    • The Pure and Applied Mathematics
    • /
    • v.22 no.3
    • /
    • pp.299-313
    • /
    • 2015
  • In this paper, we show the effectiveness of copulas by comparing the correlation of market data of year 2010 with those of years 2006-2009 and investigate copula functions as pricing methods of digital and rainbow options through real market data. We propose an accurate method of pricing rainbow options by using the correlation coefficients obtained from the copula functions depending on strike prices between assetes instead of simple traditional correlation coefficients.

The Analysis of Tail Dependence Between stock Markets Using Extreme Value Theory and Copula Function (극단치 분포와 Copula함수를 이용한 주식시장간 극단적 의존관계 분석)

  • Kim, Yong Hyun;Bae, Suk Joo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.4
    • /
    • pp.410-418
    • /
    • 2007
  • This article suggests the methods to investigate adverse movement across global stock markets arising from insolvency of subprime mortgage in U.S. Our application deals with asymptotic tail dependence of daily stock index returns (KOSPI, DJIA, Shanghai Composite) of three countries; Korea, U.S., and China, over specific period via extreme value theory and copula functions. Daily stock index returns among three countries show higher extremal dependence during the period exposed to systematic shock. We confirm that extreme value theory and copula functions have potential to well describe the extreme dependence between three countries' daily stock index returns.

A copula based bias correction method of climate data

  • Gyamfi Kwame Adutwum;Eun-Sung Chung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.160-160
    • /
    • 2023
  • Generally, Global Climate Models (GCM) cannot be used directly due to their inherent error arising from over or under-estimation of climate variables compared to the observed data. Several bias correction methods have been devised to solve this problem. Most of the traditional bias correction methods are one dimensional as they bias correct the climate variables separately. One such method is the Quantile Mapping method which builds a transfer function based on the statistical differences between the GCM and observed variables. Laux et al. introduced a copula-based method that bias corrects simulated climate data by employing not one but two different climate variables simultaneously and essentially extends the traditional one dimensional method into two dimensions. but it has some limitations. This study uses objective functions to address specifically, the limitations of Laux's methods on the Quantile Mapping method. The objective functions used were the observed rank correlation function, the observed moment function and the observed likelihood function. To illustrate the performance of this method, it is applied to ten GCMs for 20 stations in South Korea. The marginal distributions used were the Weibull, Gamma, Lognormal, Logistic and the Gumbel distributions. The tested copula family include most Archimedean copula families. Five performance metrics are used to evaluate the efficiency of this method, the Mean Square Error, Root Mean Square Error, Kolmogorov-Smirnov test, Percent Bias, Nash-Sutcliffe Efficiency and the Kullback Leibler Divergence. The results showed a significant improvement of Laux's method especially when maximizing the observed rank correlation function and when maximizing a combination of the observed rank correlation and observed moments functions for all GCMs in the validation period.

  • PDF

Performance analysis of EVT-GARCH-Copula models for estimating portfolio Value at Risk (포트폴리오 VaR 측정을 위한 EVT-GARCH-코퓰러 모형의 성과분석)

  • Lee, Sang Hun;Yeo, Sung Chil
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.4
    • /
    • pp.753-771
    • /
    • 2016
  • Value at Risk (VaR) is widely used as an important tool for risk management of financial institutions. In this paper we discuss estimation and back testing for VaR of the portfolio composed of KOSPI, Dow Jones, Shanghai, Nikkei indexes. The copula functions are adopted to construct the multivariate distributions of portfolio components from marginal distributions that combine extreme value theory and GARCH models. Volatility models with t distribution of the error terms using Gaussian, t, Clayton and Frank copula functions are shown to be more appropriate than the other models, in particular the model using the Frank copula is shown to be the best.

A development of trivariate drought frequency analysis approach using copula function (Copula 함수를 활용한 삼변량 가뭄빈도해석 기법 개발)

  • Kim, Jin-Young;So, Byung-Jin;Kim, Tae-Woong;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.10
    • /
    • pp.823-833
    • /
    • 2016
  • This study developed a trivariate Copula function based drought frequency analysis model to better evaluate the recent 2014~2015 drought event. The bivariate frequency analysis has been routinely used for the drought variables of interest (e.g. drought duration and severity). However, the recent drought patterns showed that the intensity can be regarded as an important factor which is being characterized by short duration and severe intensity. Thus, we used the trivariate Copula function approach to incorporate the trivariate drought characteristics into the drought frequency analysis. It was found that the return periods based on the trivariate frequency analysis are, in general, higher than the existing bivariate frequency analysis. In addition, this study concludes that the increase in drought frequency claimed by the Gumbel copula function has been overestimated compared to the Student t Copula function. In other words, the selection of copula functions is rather sensitive to the estimation of trivariate drought return periods at a given duration, magnitude and intensity.