• 제목/요약/키워드: copper process

검색결과 1,210건 처리시간 0.027초

용액 교반이 미세 패턴 내 무전해 구리 도금에 미치는 영향 (The Effect of Solution Agitation on the Electroless Cu Deposition Within Nano-patterns)

  • 이주열;김만;김덕진
    • 한국표면공학회지
    • /
    • 제41권1호
    • /
    • pp.23-27
    • /
    • 2008
  • The effect of solution agitation on the copper electroless deposition process of ULSI (ultra large scale integration) interconnections was investigated by using physical, electrochemical and electrical techniques. It was found that proper solution agitation was effective to obtain superconformal copper configuration within the trenches of $130{\sim}80nm$ width. The transition of open potential during electroless deposition process showed that solution agitation induced compact structure of copper deposits by suppressing mass transfer of cuprous ions toward substrate. Also, the specific resistivity of copper layers was lowered by increasing agitation speed, which made the deposited copper particles smaller. Considering both copper deposit configuration and electric property, around 500 rpm of solution agitation was the most suitable for the homogeneous electroless copper filling within the ultra-fine patterns.

폐동(廢銅)슬래그를 활용(活用)한 폐전기전자(廢電氣電子) 스크랩으로부터 유가금속(有價金屬) 고온용융추출(高溫鎔融抽出) 공정(工程) 개발(開發) (A Novel Process for Extracting Valuable Metals from Waste Electric and Electronic Scrap Using Waste Copper Slag by a High temperature Melting Method)

  • 김병수;이재천;이광호
    • 자원리싸이클링
    • /
    • 제16권3호
    • /
    • pp.27-33
    • /
    • 2007
  • 구리, 주석 등의 유가금속을 다량 함유하고 있는 폐전기전자 스크랩으로부터 유가금속을 회수하는 것은 자원 재활용 측면에서 매우 중요하다. 본 연구에서는 폐동슬래그를 슬래그 형성제로 활용하여 폐전기전자 스크랩으로부터 유가금속을 추출하기 위한 새로운 공정이 제시되었다. 제안된 공정은 슬래그 형성제로 동 제련소에서 배출되는 폐동슬래그를 재활용한다는 장점이 있다. 각 실험에서는 일정한 비율로 혼합된 폐전기전자 스크랩과 폐동슬래그의 혼합시료를 보조 슬래그 형성제인 CaO와 함께 고온 용융되었다. 실험 결과 폐전기전자 스크랩에 함유된 구리와 주석이 Cu-Fe-Sn 합금상으로 각각 95% 이상, 85% 이상 추출되었다.

Effects of chemical reaction on the polishing rate and surface planarity in the copper CMP

  • Kim, Do-Hyun;Bae, Sun-Hyuk;Yang, Seung-Man
    • Korea-Australia Rheology Journal
    • /
    • 제14권2호
    • /
    • pp.63-70
    • /
    • 2002
  • Chemical mechanical planarization (CMP) is the polishing process enabled by both chemical and mechanical actions. CMP is used in the fabrication process of the integrated circuits to achieve adequate planarity necessary for stringent photolithography depth of focus requirements. And recently copper is preferred in the metallization process because of its low resistivity. We have studied the effects of chemical reaction on the polishing rate and surface planarity in copper CMP by means of numerical simulation solving Navier-Stokes equation and copper diffusion equation. We have performed pore-scale simulation and integrated the results over all the pores underneath the wafer surface to calculate the macroscopic material removal rate. The mechanical abrasion effect was not included in our study and we concentrated our focus on the transport phenomena occurring in a single pore. We have observed the effects of several parameters such as concentration of chemical additives, relative velocity of the wafer, slurry film thickness or ash)tract ratio of the pore on the copper removal rate and the surface planarity. We observed that when the chemical reaction was rate-limiting step, the results of simulation matched well with the experimental data.

Total value recovery in the copper smelting and refining operations

  • Kim Joe. Y.;Kong Bong S.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.590-597
    • /
    • 2003
  • Processing and smelting of copper containing sulphide concentrates result in the accumulation of impurities into various process streams. All primary copper smelters and refineries around the world produce significant amounts of slag, dust, sludge, residues and others, which contain copper and precious metals. The recovery of these valuable metals is essential to the overall economics of the smelting process. Physical, chemical and mineralogical characterization of particular slag and Cottrell dusts from primary smelters and $Dor\'{e}$ furnace (TBRC) slag and Pressure Leached Anode slimes from a copper refinery have been carried out to understand the basic behind the recovery processes. Various process options have been evaluated and adapted for the treatment of slag from different smelting furnaces and Cottrell dusts as well as the intermediate products from copper refineries. Besides the hydro- or pyro-metallurgical treatments, the above mentioned physical separation options such as magnetic, gravity separation, flotation and precipitation flotation processes have been successfully identified and adapted as the possible process options to produce a Cu-rich or precious metal-rich concentrates for in-house recycling and other valued by-product for further treatment. The results of laboratory, pilot plant and production operations are presented, and incorporation of several alternative flowsheet is discussed in this paper.

  • PDF

MINERAL PROCESSING and COPPER EXRACTIVE METALLURGY Complete Metal Recovery

  • Kim, J.Y.
    • 한국자원리싸이클링학회:학술대회논문집
    • /
    • 한국자원리싸이클링학회 2003년도 추계정기총회 및 국제심포지엄
    • /
    • pp.22-34
    • /
    • 2003
  • Processing and smelting of copper containing sulphide concentrates result in the accumulation of impurities into various process streams. All primary copper smelters and refineries around the world produce significant amounts of slag, dust, sludge, residues and others, which contain copper and precious metals. The recovery of these valuable metals is essential to the overall economics of the smelting process. Physical, chemical and mineralogical characterization of particular slag and Cottrell dusts from primary smelters and Dore furnace (TBRC) slag and Pressure Leached Anode slimes from a copper refinery have been carried out to understand the basic behind the recovery processes. Various process options have been evaluated and adapted for the treatment of slag from different smelting furnaces and Cottrell dusts as well as the intermediate products from copper refineries. Besides the hydro- or pyre-metallurgical treatments, the above mentioned physical separation options such as magnetic, gravity separation, flotation and precipitation flotation processes have been successfully identified and adapted as the possible process options to produce a Cu-rich or precious metal-rich concentrates for in-house recycling and other valued by-product for further treatment. The results of laboratory, pilot plant and production operations are presented, and incorporation of several alternative flowsheet is discussed in this paper.

  • PDF

가열금형을 사용하는 강철과 알루미늄 이종금속판재의 전기저항 이중스폿용접 (Electric Resistance Double Spot Welding Process of Dissimilar Metal Plates of Steel and Aluminum by Using Heating Dies)

  • 김태현;;진인태
    • 소성∙가공
    • /
    • 제27권1호
    • /
    • pp.37-47
    • /
    • 2018
  • In this paper, a double spot welding process, utilizing electric resistance heating dies, is suggested for the spot welding of dissimilar metal plates for drawing and concurrent spot welding. This double welding process has two heating methods for the fusion welding at the interfacial zone between steel and aluminum plates, such as heating method by thermal conduction of electric resistance by welding current induced to heating dies, and heating method by electric resistance between contacted surfaces of two plates by welding current induced to copper electrode. This double welding process has welding variables such as each current induced in heating dies and in copper electrode, outer diameters of heating dies, and edge shape of copper electrode. Experiments for current conditions in welding process should be demanded in order to get successful welding strength. It was known that the welding strength could be reached to the value demanded on industry fields under such welding conditions as heating dies of outer ring dia.12mm contacted on steel plate, as heating dies of outer ring dia. 14mm contacted on aluminum plate, and as copper electrode of dia. 6.0mm, and as 3 times continuous heating method by $1^{st}$ current of 11 kA(9cycle), $2^{nd}$ current 11 kA(60cycle), $3^{rd}$ current 7 kA(60cycle) applied in steel heating dies and copper electrodes, flat edge of copper electrode, for double spot welding process of dissimilar metal plates of steel and aluminum of 1.0 mm thickness.

실험계획법을 통한 구리 질화물 패시베이션 형성을 위한 아르곤 플라즈마 영향 분석 (Analysis of Ar Plasma Effects for Copper Nitride Passivation Formation via Design of Experiment)

  • 박해성;김사라은경
    • 마이크로전자및패키징학회지
    • /
    • 제26권3호
    • /
    • pp.51-57
    • /
    • 2019
  • 구리 표면을 대기 중의 산화로부터 보호하기 위해서 아르곤(Ar)과 질소($N_2$) 가스를 이용하는 two-step플라즈마 공정으로 산화 방지층인 구리 질화물 패시베이션 형성을 연구하였다. Ar 플라즈마는 구리 표면에 존재하는 이물질을 제거하는 동시에 표면을 활성화시켜 다음 단계에서 진행되는 $N_2$ 플라즈마 공정 시 질소 원자와 구리의 반응을 촉진시키는 역할을 수행한다. 본 연구에서는 two-step 플라즈마 공정 중 Ar 플라즈마 공정 조건이 구리 질화물 패시베이션 형성에 미치는 영향을 실험계획법의 완전요인설계를 통하여 분석하였다. XPS 분석에 의하면 Ar 플라즈마 공정 시 낮은 RF 파워와 압력을 사용할 경우 구리 산화물 피크(peak) 면적은 감소하고, 반대로 구리 질화물(Cu4N, Cu3N) 피크 면적은 증가하였다. Ar 플라즈마 공정 시 구리 질화물 형성의 주 효과는 RF 파워로 나타났으며 플라즈마 공정 변수간 교호작용은 거의 없었다.

수평식 연속주조법에 제조된 무산소동의 방향성 응고에 관한 연구 (A Study on the Unidirectional Solidification of Oxygen Free Copper by the Horizontal Continuous Casting Process)

  • 김명한;이유재;조형호
    • 한국주조공학회지
    • /
    • 제14권6호
    • /
    • pp.558-565
    • /
    • 1994
  • The horizontal continuous casting process with the heated mold was applied to obtain the unidirectionally solidified rods($4{\sim}8mm$ dia.) of pure copper with good surface quality. The results could be summarized as follows. 1. The unidirectional solidification of pure copper rods with good surface(mirror surface) quality could be obtained by placing the S/L interface inside the heated mold cavity even though the cast copper rods were covered with thin copper oxide layer. 2. The casting speed for 4mm dia. rods with mirror surfaces was affected significantly by the mold-cooler distance rather than the cooling flow rate when other casting conditions were fixed. 3. The casting speed was the main factor affecting the oxidation of copper during the continuous casting and the thickness of copper oxide layer decreased almost linearly as the casting speed increased.

  • PDF

저변형률속도에서 ARB가공된 무산소동의 미세조직 및 기계적 성질 (Microstructure and Mechanical Properties of Oxygen Free Copper Processed by ARB at Low Strain Rate)

  • 이성희;한승전;임차용
    • 한국재료학회지
    • /
    • 제17권10호
    • /
    • pp.521-525
    • /
    • 2007
  • The microstructure and mechanical properties of an oxygen free copper processed by accumulative roll bonding(ARB) at low strain rate were studied. The copper sheets were highly strained up to an equivalent strain of ${\sim}6.4$ by ARB process at ambient temperature. The strain rate of the copper during the ARB was $2.6sec^{-1}$. The microstructure and mechanical properties of the ARB-processed copper were compared to those of the specimens processed by ARB at relatively high strain rate ($37sec^{-1}$). The microstructure and mechanical properties of the copper with ARB process was very similar to each other despite of some differences in recovery.

Characteristics of dry-process based metal nano ink for printed electrodes

  • Kim, Dong-Kwon;Lee, Caroline;Hong, Seong-Je;Kim, Young-Seok
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.1466-1468
    • /
    • 2009
  • The preparation method of copper nanopowder by dry process for conductive ink was investigated. Inert gas condensation method was used to synthesize copper nanopowder. The produced powders was spherical and sized 10~100nm flowing the conditions. The results showed that input voltage and evaporation rate is critical variables for nano-sized copper powder.

  • PDF