Browse > Article
http://dx.doi.org/10.6117/kmeps.2019.26.3.051

Analysis of Ar Plasma Effects for Copper Nitride Passivation Formation via Design of Experiment  

Park, Hae-Sung (Department of Mechanical Engineering, Seoul National University of Science and Technology)
Kim, Sarah Eunkyung (Graduate School of Nano-IT Design Convergence, Seoul National University of Science and Technology)
Publication Information
Journal of the Microelectronics and Packaging Society / v.26, no.3, 2019 , pp. 51-57 More about this Journal
Abstract
To protect the Cu surface from oxidation in air, a two-step plasma process using Ar and $N_2$ gases was studied to form a copper nitride passivation as an anti-oxidant layer. The Ar plasma removes contaminants on the Cu surface and it activates the surface to facilitate the reaction of copper and nitrogen atoms in the next $N_2$ plasma process. This study investigated the effect of Ar plasma on the formation of copper nitride passivation on Cu surface during the two-step plasma process through the full factorial design of experiment (DOE) method. According to XPS analysis, when using low RF power and pressure in the Ar plasma process, the peak area of copper oxides decreased while the peak area of copper nitrides increased. The main effect of copper nitride formation in Ar plasma process was RF power, and there was little interaction between plasma process parameters.
Keywords
Design of experiment; full factorial; plasma treatment; passivation layer; Cu-Cu bonding;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 R. S. List, C. Webb, and S. E. Kim, "3D wafer stacking technology", Proc. Advanced Metallization Conference, San Diego, CA, USA, 18, 29, (2002).
2 J. H. Lau, M. Li, M. L. Qingqian, T. Chen, I. Xu, Q. X. Yong, Z. Cheng, N. Fan, E. Kuah, Z. Li, K. H. Tan, Y. M. Cheung, E. Ng, P. Lo, W. Kai, J. Hao, K. S. Wee, J. Ran, C. Xi, R. Beica, S. P. Lim, N. C. Lee, C. T. Ko, H. Yang, Y. H. Chen, M. Tao, J. Lo, and R. S. W. Lee, "Fan-out wafer-level packaging for Heterogenous Integration", IEEE Trans. Compon. Packag. Manuf. Technol., 8(9), 1544 (2018).   DOI
3 C. T. Ko, and K. N. Chen, "Low Temperature Bonding Technology for 3D Integration", Microelectron. Reliab., 52(2), 302 (2012).   DOI
4 C. S. Tan, "Wafer Level 3-D ICs Process Technology", pp.1-11, Springer Science & Business Media, Springer (2009).
5 P. Morrow, M. J. Kobrinsky, S. Ramanathan, C. M. Park, M. Harmes, V. Ramachandrarao, H. Mog Park, G. Kloster, S. List, and S. Kim, "Wafer level 3D Interconnects via Cu Bonding", Proc. Advanced Metallization Conference, San Diego, CA, USA, 125 (2004).
6 S. E. Kim, and S. D. Kim, "Wafer level Cu-Cu Direct Bonding for 3D Integration", Microelectron. Eng., 137(1), 158 (2015).   DOI
7 S. Kang, J. Lee, E. Kim, N. Lim, S. Kim, S. Kim, and S. E. Kim, "Fabrication and Challenges of Cu-to-Cu Wafer Bonding", J. Microelectron. Packag. Soc., 19(2), 29 (2012).   DOI
8 T. H. Kim, M. M. R. Howladar, T. Itoh, and T. Suga, "Room Temperature Cu-Cu Direct Bonding using Surface Activated Bonding Method", J. Vac. Sci. Technol. A, 21(2), 449 (2003).
9 W. Yang, H. Shintani, M. Akaike, and T. Suga, "Low Temperature Cu-Cu Direct Bonding using Formic Acid Vapor Pretreatment", Proc. IEEE Electronic Components and Technology Conference (ECTC), Lake Buena Vista, FL, USA, May (2011).
10 H. J. Ju, Y. H. Lee, S. S. Nho, E. H. Choi, S. K. Rha, and Y. S. Lee "Surface Cleaning Method for Elimination of Cuoxide Layer Formed on Cu Film", Proc. 18th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), Incheon, Korea (2011).
11 C. Biesinger, "Advanced Analysis of Copper X-ray Photoelectron Spectra", Surf. Interface Anal., 49(9), 1325 (2017).   DOI
12 H. Ju, Y. H. Lee, Y. S. Lee, and S. K. Rha, "Surface Pretreatments for Remove of Native Cu Oxide Layer", J. Surf. Anal., 17(3), 287 (2011).   DOI
13 D. F. Lim, J. Wei, K. C. Leong, and C. S. Tan, "Cu Passivation for Enhanced Low Temperature ($300^{\circ}C$) Bonding in 3D Integration", Microelectron. Eng., 106, 144 (2013).   DOI
14 A. K. Panigrahi, T. Ghosh, S. Vanjari, and S. Singh, "Oxidation Resistive, CMOS Compatible Copper-Based Alloy Ultrathin Films as a Superior Passivation Mechanism for Achieving $150^{\circ}C$ Cu-Cu Wafer on Wafer Thermocompression Bonding", IEEE Trans. Electron Devices, 64(3), 1239 (2017).   DOI
15 H. Park, and S. E. Kim, "Structural Characteristics of Ar-N2 Plasma Treatment on Cu Surface", J. Microelectron. Packag. Soc., 25(4), 75 (2018).   DOI
16 M. Okada, L. Vattuone, K. Moritani, L. Savio, Y. Teraoka, T. Kasai, and M. Rocca, "X-ray Photoemission Study of the Temperature-dependent CuO Formation on Cu(410) using an Energetic $O_2$ Molecular Beam", Phys. Rev. B., 75(23), 233413 (2007).   DOI
17 A. Miura, T. Takei, and N. Kumada, "Synthesis of $Cu_3N$ from CuO and $NaNH_2$", J. Asian Ceram. Soc., 2(40), 326 (2014).   DOI
18 CasaXPS from http://www.casaxps.com
19 G. H. Yue, P. X. Yan, J. Z. Liu, M. X. Wang, M. Li, and X. M. Yuan, "Copper Nitride Thin Film Prepared by Reactive Radio-frequency Magnetron Sputtering", J. Appl. Phys., 98, 103506 (2005).   DOI
20 J. Blucher, K. Bang, and B. C. Giessen, "Preparation of the Metastable Interstitial Copper Nitride, Cu4N, by d.c. plasma ion nitriding", Mater. Sci. Eng. A., 117, L1 (1989).   DOI
21 F. Guto, A. Simon, J. Jurgen Kohler, and R. K. Kremer, "Li-Cu Exchange in Intercalated $Cu_3N$ - With a Remark on $Cu_4N$", Angew. Chem. Int. Ed., 43(15), 2032 (2004).   DOI