• Title/Summary/Keyword: copper particles

Search Result 261, Processing Time 0.034 seconds

Planar Shock Wave Compaction of Oxidized Copper Nano Powders using High Speed Collision and Its Mechanical Properties (고속 충돌 시 발생하는 평면 충격파를 이용한 산화 나노 분말의 치밀화 및 기계적 특성 평가)

  • Ahn, Dong-Hyun;Kim, Wooyeol;Park, Lee Ju;Kim, Hyoung Seop
    • Journal of Powder Materials
    • /
    • v.21 no.1
    • /
    • pp.39-43
    • /
    • 2014
  • Bulk nanostructured copper was fabricated by a shock compaction method using the planar shock wave generated by a single gas gun system. Nano sized powders, average diameter of 100 nm, were compacted into the capsule and target die, which were designed to eliminate the effect of undesired shock wave, and then impacted with an aluminum alloy target at 400 m/s. Microstructure and mechanical properties of the shock compact specimen were analyzed using an optical microscope (OM), scanning electron microscope (SEM), and micro indentation. Hardness results showed low values (approximately 45~80 Hv) similar or slightly higher than those of conventional coarse grained commercial purity copper. This result indicates the poor quality of bonding between particles. Images from OM and SEM also confirmed that no strong bonding was achieved between them due to the insufficient energy and surface oxygen layer of the powders.

Synthesis of Nickel and Copper Nanopowders by Plasma Arc Evaporation

  • Cho, Young-Sang;Moon, Jong Woo;Chung, Kook Chae;Lee, Jung-Goo
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.411-424
    • /
    • 2013
  • In this study, the synthesis of nickel nanoparticles and copper nanospheres for the potential applications of MLCC electrode materials has been studied by plasma arc evaporation method. The change in the broad distribution of the size of nickel and copper nanopowders is successfully controlled by manifesting proper mixture of gas ambiance for plasma generation in the size range of 20 to 200 nm in diameter. The factors affecting the mean diameter of the nanopowder was studied by changing the composition of reactive gases, indicating that nitrogen enhances the formation of larger particles compared to hydrogen gas. The morphologies and particle sizes of the metal nanoparticles were observed by SEM, and ultrathin oxide layers on the powder surface generated during passivation step have been confirmed using TEM. The metallic FCC structure of the nanoparticles was confirmed using powder X-ray diffraction method.

Synthesis and studies on novel Copper adenine MOF for $CO_2$ adsorption (이산화탄소 흡착용 구리 아데닌 MOF 합성 및 연구)

  • Ganesh, Mani;Hemalatha, Pushparaj;Peng, Mei Mei;Kim, Dae-Kyung;Jang, Hyun-Tae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12a
    • /
    • pp.357-360
    • /
    • 2011
  • A new copper adenine MOF (Bio-MOF) was synthesized by hydrothermal procedure and explored for its low temperature $CO_2$ adsorption. In this adenine a DNA nucleotide was used as a ligand for Cu in DMF solution at $130^{\circ}C$. The synthesized Bio MOF was characterized by XRD, SEM, EDS, TG and BE Tresults. The material possesses high surface area (716.08 $m^2g^{-1}$) with mono dispersed particles of about 2.126 nm. The maximum $CO_2$ adsorption capacity is 5wt% at $50^{\circ}C$, which is regenerable at $100^{\circ}C$ which is very low when compared to other metal organic frame work studied. This study proves that the synthesized material is also be a choice materials for low temperature $CO_2$adsorption.

  • PDF

Treatment of Heavy Metal Wastewater Bed Electrode Reactor by a Fluidized 1. Distribution of Local Mass Transfer Coefficients on the Current Feeder (유동층 전극반응기를 이용한 중금속폐수의 처리에 관한 연구 1. 전류공급원에서의 국부물질전달계수의 분포)

  • 황영기;정은혁
    • Journal of Environmental Science International
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 1997
  • Varing the flow velocity of solution and particle diameter, the mass transfer coefficient of the local electrode on current feeder has been measured in an empty flow reactor, an inert fluidized bed electrode reactor, and an active fluidized bed electrode reactor. It had its maximium value when the bed porosity was 0.6 to 0.65 and decreased with in- creasing the height of local electrode. The mass transfer coefficient was found to be high especially when higher particle was fluidized. Electrochemical deposition of copper dissolved in the synthesized wastewater has been performed in the active fluidized bed electrode reactor. The deduction rate was higher than 90% and the residual concentration of copper decreased to less than 5ppm.

  • PDF

Synthesis and luminescence characterization of ZnS:Cu,Al phosphor by combustion method

  • Jeong, Young-Ho;Myung, Kwang-Shik;Park, Jin-Won;Hua, Yang;Han, Sang-Do
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1009-1012
    • /
    • 2003
  • A novel powder processing technique for the preparation of copper activated zinc sulfide (ZnS:Cu,Al) phosphor by combustion process has been proposed. Exothermic reaction between dissolved copper nitrate and carbohydrazide give small-sized particles in presence of alkali metal halides at lower temperature than the traditional method of preparation. This new route takes less than five minutes and requires much less energy. The optical and luminescence characteristics of ZnS:Cu,Al phosphor thus prepared were found to be enhanced significantly. Carbohydrazide acted as fuel at $500^{\circ}C$ with rapid heating and then the phosphors obtained were heated at $900^{\circ}C$ in an inert atmosphere for 3hrs to get better luminescent properties.

  • PDF

A Study on Fabrication of $Bi_{2}Sr_{2}Ca_{2}Cu_{3}O_{x}$ Superconductor Thick Films on Cu Substrates (동피복 Bi2223 초전도후막 합성에 관한 연구)

  • 한상철;성태현;한영희;이준성;안재원
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.478-481
    • /
    • 2002
  • We carried out the experiments for fabricating $Bi_{2}Sr_{2}Ca_{2}Cu_{3}O_{x}$(Bi2223) superconductor thick films on Cu tapes. Cu-free (Bi,Pb)-Sr-Ca-0 powder mixtures were screen- printed on Cu tapes and heat-treated at 840-$860^{\circ}C$ for several minutes in air. Surface microstructures and phases of films were analyzed by XRD and optical microscope. The electric properties of superconducting films were examined by the four probe method. At heat-treatment temperature, the printing layers were in a partially molten state by liquid reaction between CuO in the oxidized copper tape and the precursors which were printed on Cu tapes. During the heat-treatment procedure, it is thought that Bi2223 superconducting particles nucleate at interfaces between Bi2212 phase and liquid.

  • PDF

Facile Synthesis of Hollow CuO/MWCNT Composites by Infiltration-Reduction-Oxidation Method as High Performance Lithium-ion Battery Anodes

  • Zheng, Gang;Li, Zhiang;Lu, Jinhua;Zhang, Jinhua;Chen, Long;Yang, Maoping
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.399-405
    • /
    • 2020
  • Hollow copper oxide/multi-walled carbon nanotubes (CuO/MWCNT) composites were fabricated via an optimized infiltration-reduction-oxidation method, which is more facile and easy to control. The crystalline structure and morphology were characterized by X-ray diffraction (XRD), and transmission electron microscopy (TEM). The as-prepared CuO/MWCNT composites deliver an initial capacity of 612.3 mAh·g-1 and with 80% capacity retention (488.2 mAh·g-1) after 100 cycles at a current rate of 0.2 A·g-1. The enhanced electrochemical performance is ascribed to the better electrical conductivity of MWCNT, the hollow structure of CuO particles, and the flexible structure of the CuO/MWCNT composites.

Synthesis of ZnS:Cu,Cl phosphor by combustion method

  • Han, Sang-Do;Kim, Byeong-Kwon;Park, Jo-Yong;Khatkar, S.P.;Taxak, V.B.;Singh, Ishwar
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.759-761
    • /
    • 2002
  • A new method for the preparation of copper activated zinc sulfide phosphors by combustion method has been proposed. Copper nitrate was decomposed with an organic fuel to give fine sized particles in presence of alkali metal halides at low temperature than the conventional synthesis. Organic compound also acted as fuel at 500 $^{\circ}C$ with rapid heating. The phosphors thus obtained were then heated at 900 $^{\circ}C$ in an inert atmosphere for 2-5 hrs to get better luminescent properties.

  • PDF

Fabrication and Characterization of Immiscible Fe-Cu Alloys using Electrical Explosion of Wire in Liquid

  • Phuc, Chu Dac;Thuyet, Nguyen Minh;Kim, Jin-Chun
    • Journal of Powder Materials
    • /
    • v.27 no.6
    • /
    • pp.449-457
    • /
    • 2020
  • Iron and copper are practically immiscible in the equilibrium state, even though their atomic radii are similar. As non-equilibrium solid solutions, the metastable Fe-Cu alloys can be synthesized using special methods, such as rapid quenching, vapor deposition, sputtering, ion-beam mixing, and mechanical alloying. The complexity of these methods (multiple steps, low productivity, high cost, and non-eco-friendliness) is a hinderance for their industrial applications. Electrical explosion of wire (EEW) is a well-known and effective method for the synthesis of metallic and alloy nanoparticles, and fabrication using the EEW is a simple and economic process. Therefore, it can be potentially employed to circumvent this problem. In this work, we propose the synthesis of Fe-Cu nanoparticles using EEW in a suitable solution. The powder shape, size distribution, and alloying state are analyzed and discussed according to the conditions of the EEW.

Trajectory Simulation of ASR Particles in Induction Electrostatic Separation (유도형 정전선별에서 ASR 입자의 궤적모사)

  • Kim, Beom-uk;Park, Chul-hyun
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.96-105
    • /
    • 2019
  • Automobile shredder residue (ASR) is the final waste produced when end-of-life vehicles (ELVs) are shredded. ASR can be separated using mineral-processing operations such as comminution, air classification, magnetic separation, and/or electrostatic separation. In this work, trajectory analyses of conductors (copper) and non-conductors (glass) in the ASR have been carried out using induction electrostatic separator for predicting or improving the ASR-separation efficiency. From results of trajectory analysis for conductors, the trajectories of copper wire by observation versus simulation for coarse particles of 0.5 and 0.25 mm showed consistent congruity. The observed 0.06 mm fine-particles trajectory was deflected toward the (-) attractive electrode owing to the charge-density effects due to the particle characteristics and relative humidity. In the case of non-conductors, the actual trajectory of dielectric glass deflected toward the (-) electrode, showing characteristics similar to those of conductive particles. The analyses of stereoscopic microscope and SEM & EDS found heterologous materials (fine ferrous particles and conductive organics) on the glass surface. This demonstrates the glass decreasing separation efficiency for non-ferrous metals during electrostatic separation for the recycling of ASR. Future work will require a pretreatment process for eliminating impurities from the glass and advanced trajectory-simulation processes.