Browse > Article
http://dx.doi.org/10.7844/kirr.2019.28.6.96

Trajectory Simulation of ASR Particles in Induction Electrostatic Separation  

Kim, Beom-uk (Department of Energy & Resources Engineering, Chosun University)
Park, Chul-hyun (Department of Energy & Resources Engineering, Chosun University)
Publication Information
Resources Recycling / v.28, no.6, 2019 , pp. 96-105 More about this Journal
Abstract
Automobile shredder residue (ASR) is the final waste produced when end-of-life vehicles (ELVs) are shredded. ASR can be separated using mineral-processing operations such as comminution, air classification, magnetic separation, and/or electrostatic separation. In this work, trajectory analyses of conductors (copper) and non-conductors (glass) in the ASR have been carried out using induction electrostatic separator for predicting or improving the ASR-separation efficiency. From results of trajectory analysis for conductors, the trajectories of copper wire by observation versus simulation for coarse particles of 0.5 and 0.25 mm showed consistent congruity. The observed 0.06 mm fine-particles trajectory was deflected toward the (-) attractive electrode owing to the charge-density effects due to the particle characteristics and relative humidity. In the case of non-conductors, the actual trajectory of dielectric glass deflected toward the (-) electrode, showing characteristics similar to those of conductive particles. The analyses of stereoscopic microscope and SEM & EDS found heterologous materials (fine ferrous particles and conductive organics) on the glass surface. This demonstrates the glass decreasing separation efficiency for non-ferrous metals during electrostatic separation for the recycling of ASR. Future work will require a pretreatment process for eliminating impurities from the glass and advanced trajectory-simulation processes.
Keywords
Induction electrostatic separation; ASR; trajectory simulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Baek, S.-H., Jeon, H.-S., Lee, E.-S. et al., 2014 : Present condition of end-of-life vehicles & slf/asr recycling in europe. Journal of the Korean Institute of Resources Recycling, 23, pp.58-68.
2 Passarini, F., Ciacci, L., Santini, A. et al., 2014 : Aluminium flows in vehicles: Enhancing the recovery at end-of-life. Journal of Material Cycles and Waste Management, 16, pp.39-45.   DOI
3 Santini, A., Passarini, F., Vassura, I. et al., 2012 : Auto shredder residue recycling: Mechanical separation and pyrolysis. Waste Management, 32, pp.852-858.   DOI
4 Miller, L., Soulliere, K., Sawyer-Beaulieu, S. et al., 2014 : Challenges and alternatives to plastics recycling in the automotive sector. Materials, 7, pp.5883-5902.   DOI
5 Directive, E. U., 2000 : 53/EC of the European Parliament and of the Council of 18 September 2000 on end-of life vehicles. Official Journal of the European Union, L Series 21, pp.34-42.
6 Ministry of envrionment of korea, Act on Resource Circulation of Electrical and Electronic Equipment and Vehicle, http://www.law.go.kr/lsInfoP.do?lsiSeq=188594&urlMode=engLsInfoR&viewCls=engLsInfoR#0000 December.10.2019
7 Inculet, I. I., 1984 : Electrostatic mineral separation. Research Studies Press.
8 De Araujo, M. C. P. B., Chaves, A. P., Espinosa, D. C. R., and Tenorio, J. A. S. 2008 : Electronic scraps-recovering of valuable materials from parallel wire cables. Waste management, 28, pp.2177-2182.   DOI
9 Dias, P., Schmidt, L., Gomes, L. B. et al., 2018 : Recycling waste crystalline silicon photovoltaic modules by electrostatic separation. Journal of Sustainable Metallurgy, 4, pp.176-186.   DOI
10 Li, J. and Xu, Z., 2019 : Compound tribo-electrostatic separation for recycling mixed plastic waste Journal of Hazardous Materials, 367, pp.43-49.   DOI
11 Vlad, S., Urs, A., Iuga, A. et al., 2001 : Premises for the numerical computation of conducting particle trajectories in plate-type electrostatic separators. Journal of Electrostatics, 51, pp.259-265.   DOI
12 Dascalescu, L., Mizuno, A., Tobazeon, R. et al., 1995 : Charges and forces on conductive particles in roll-type corona-electrostatic separators. IEEE Transactions on Industry Applications, 31, pp.947-956.   DOI
13 Vlad, S., Iuga, A., and Dascalescu, L., 2000 : Modelling of conducting particle behaviour in plate-type electrostatic separators. Journal of Physics D: Applied Physics, 33, pp.127.   DOI
14 Vlad, S., Mihailescu, M., Rafiroiu, D. et al., 2000 : Numerical analysis of the electric field in plate-type electrostatic separators. Journal of Electrostatics, 48, pp.217-229.   DOI
15 Richard, G., Salama, A., Medles, K. et al., 2017 : Experimental and numerical study of the electrostatic separation of two types of copper wires from electric cable wastes. IEEE Transactions on Industry Applications, 53(4), pp.3960-3969.   DOI
16 Vlad, S., Iuga, A., and Dascalescu, L., 2003 : Numerical computation of conducting particle trajectories in platetype electrostatic separators. IEEE Transactions on Industry applications, 39, pp.66-71.   DOI
17 Caron, A. and Dascalescu, L., 2004 : Numerical modeling of combined corona-electrostatic fields. Journal of Electrostatics, 61, pp.43-55.   DOI
18 Labair, H., Touhami, S., Tilmatine, A. et al., 2017 : Study of charged particles trajectories in free-fall electrostatic separators. Journal of Electrostatics, 88, pp.10-14.   DOI
19 Richard, G., Touhami, S., Zeghloul, T. et al., 2017 : Optimization of metals and plastics recovery from electric cable wastes using a plate-type electrostatic separator. Waste Management, 60, pp.112-122.   DOI
20 Li, J., Lu, H., Xu, Z., et al., 2008 : A model for computing the trajectories of the conducting particles from waste printed circuit boards in corona electrostatic separators. Journal of Hazardous Materials, 151, pp.52-57.   DOI
21 Li, J., Xu, Z., and Zhou, Y., 2008 : Theoretic model and computer simulation of separating mixture metal particles from waste printed circuit board by electrostatic separator Journal of Hazardous Materials, 153, pp.1308-1313.   DOI
22 Lu, H., Li, J., Guo, J. et al., 2008 : Movement behavior in electrostatic separation: Recycling of metal materials from waste printed circuit board. Journal of materials processing technology, 197, pp.101-108.   DOI
23 Cossu, R. and Lai, T., 2015 : Automotive shredder residue (asr) management: An overview. Waste Management, 45, pp.143-151.   DOI
24 Wu, J., Li, J., and Xu, Z., 2009 : An improved model for computing the trajectories of conductive particles in roll-type electrostatic separator for recycling metals from WEEE. Journal of Hazardous Materials, 167, pp.489-493.   DOI
25 N.-J. Felici, 1966 : Forces et charges de petits objets en contact avec une tlectrode affectke d'un champ Clectrique, Revue GCnCrale de L'tlectricitt, pp.1145-1160.
26 Angelov, A., Vereshyagin, I., and Yershov, V., 1983 : Physical basis at electrostatic separation. Moscow Geology Press, Moscow.
27 Nourreddine, M., 2007 : Recycling of auto shredder residue. Journal of Hazardous Materials, 139, pp.481-490.   DOI