• Title/Summary/Keyword: copper electrode

Search Result 379, Processing Time 0.026 seconds

Influence on Relative Electrode Wear by Material and Size of Electrode (전극의 재료와 크기가 전극소모에 미치는 영향)

  • 전언찬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.671-677
    • /
    • 1999
  • This study has been performed to investigate REW(relative electrode wear) in condition of vari-ous pulse-on duration using the copper and graphite electrode with change of the electrode size on the heat treated STD11 which is extensively used for metallic molding steel with the EDM. The results obtained are as follows; a) Graphite has much benefits than copper electrode when rapid machining is done without electrode wear, b) Neative REW result from the electrode that is very liable attach to decomposition carbide c)Increasing of machining time cause to increase wear length of the copper electrode and decrease wear length of the graphite electorde d)The more pulse-on duration copper electrode has the less REW. e) The edge portion of the electorde wears remarkably at the beginning of machining,.

  • PDF

Effects of electrode configurations on uniformity of copper films on flexible polymer substrate prepared by ECR-MOCVD (ECR-MOCVD에 의해 연성 고분자 기판에 제조된 구리막의 균일도에 전극의 형태가 미치는 영향)

  • 전법주;이중기
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.34-46
    • /
    • 2004
  • Copper films were prepared by using ECR-MOCVD(Electron Cyclotron Resonance Metal Organic Chemical Vapor Deposition) coupled with a DC bias system. The DC bias is connected to the electrode which placed 1∼3cm above the polymer substrate. The pulse electrical field around the electrode attracts the positive charged copper ions generated from the dissociation of copper precursor, $Cu(hfac)_2$, under ECR plasma. Condensation of supersaturated copper ions in the space between the electrode and substrate, makes it possible to deposit copper film on the polymer substrate even at room temperature. In this study, optimization of the electrode configuration was carried out in order to obtain the uniform films. The uniformity of the deposited films were closely related to the parameters of electrode geometry such as electrode shape, thickness, grid size and the spacing between electrodes. The most uniform copper film was observed with the electrode that enabled uniform electrical field distribution across the whole dimension of electrode.

Formation of Copper Electroplated Electrode Patterning Using Screen Printing for Silicon Solar Cell Transparent Electrode (실리콘 태양전지 투명전극용 스크린 프린팅을 이용한 구리 도금 전극 패터닝 형성)

  • Kim, Gyeong Min;Cho, Young Joon;Chang, Hyo Sik
    • Korean Journal of Materials Research
    • /
    • v.29 no.4
    • /
    • pp.228-232
    • /
    • 2019
  • Copper electroplating and electrode patterning using a screen printer are applied instead of lithography for heterostructure with intrinsic thin layer(HIT) silicon solar cells. Samples are patterned on an indium tin oxide(ITO) layer using polymer resist printing. After polymer resist patterning, a Ni seed layer is deposited by sputtering. A Cu electrode is electroplated in a Cu bath consisting of $Cu_2SO_4$ and $H_2SO_4$ at a current density of $10mA/cm^2$. Copper electroplating electrodes using a screen printer are successfully implemented to a line width of about $80{\mu}m$. The contact resistance of the copper electrode is $0.89m{\Omega}{\cdot}cm^2$, measured using the transmission line method(TLM), and the sheet resistance of the copper electrode and ITO are $1{\Omega}/{\square}$ and $40{\Omega}/{\square}$, respectively. In this paper, a screen printer is used to form a solar cell electrode pattern, and a copper electrode is formed by electroplating instead of using a silver electrode to fabricate an efficient solar cell electrode at low cost.

Reference Electrode for Monitoring Cathodic Protection Potential

  • Panossian, Z.;Abud, S.E.
    • Corrosion Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.227-234
    • /
    • 2017
  • Reference electrodes are generally implemented for the purpose of monitoring the cathodic protection potentials of buried or immersed metallic structures. In the market, many types of reference electrodes are available for this purpose, such as saturated calomel, silver/silver chloride and copper/copper sulfate. These electrodes contain a porous ceramic junction plate situated in the cylindrical body bottom to permit ionic flux between the internal electrolyte (of the reference electrode) and the external electrolyte. In this work, the copper/copper sulfate reference electrode was modified by replacing the porous ceramic junction plate for a metallic platinum wire. The main purpose of this modification was to avoid the ion copper transport from coming from the inner reference electrode solution into the surrounding electrolyte, and to mitigate the copper plating on the coupon surfaces. Lab tests were performed in order to compare the performance of the two mentioned reference electrodes. We verified that the experimental errors associated with the measurements conducted with developed reference electrode would be negligible, as the platinum surface area exposed to the surrounding electrolyte and/or to the reference electrolyte are maintained as small as possible.

Electro-oxidation of Cyclohexanol on a Copper Electrode Modified by Copper-dimethylglyoxime Complex Formed by Electrochemical Synthesis

  • Hasanzadeh, Mohammad.;Shadjou, Nasrin.;Saghatforoush, Lotfali.;Khalilzadeh, Balal.;Kazeman, Isa.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.2943-2948
    • /
    • 2009
  • Copper-dimethylglyoxime complex (CuDMG) modified Copper electrode (Cu/CuDMG) showed a catalytic activity towards cyclohexanol oxidation in NaOH solution. The modified electrode prepared by the dimethylglyoxime anodic deposition on Cu electrode in the solution contained 0.20 M $NH_4Cl\;+\;NH_4OH\;(pH\;9.50)\;and\;1\;{\times}\;10^{-4}$ M dimethylglyoxime. The modified electrode conditioned by potential recycling in a potential range of -900${\sim}$900 mV vs. Ag/AgCl by cyclic voltammetry in alkaline medium (1 M NaOH). The results show that the CuDMG film on the electrode behaves as an efficient catalyst for the electro-oxidation of cyclohexanol in alkaline medium via Cu (III) species formed on the electrode.

Mechanically Immobilized Copper Hexacyanoferrate Modified Electrode for Electrocatalysis Amperometric Determination of Glutathione

  • D. Davi Shankaran;S. Sriman Narayanan
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.816-820
    • /
    • 2001
  • A new copper hexacyanoferrate modified electrode was constructed by mechanical immobilization. The modified electrode was characterised by cyclic voltammetric experiments. Electrocatalytic oxidation of glutathione was effective at the modified electrode at a significantly reduced overpotential and at broader pH range. The modified electrode shows a stable and linear response in the concentration range of 9 ${\times}$10-5 to 9.9 ${\times}$10-4M with a correlation coefficient of 0.9995. The modified electrode exhibits excellent stability, reproducibility and rapid response and can be used in flow injection analysis for the determination of glutathione.

Fabrication of Electrochemical Sensor with Tunable Electrode Distance

  • Yi, Yu-Heon;Park, Je-Kyun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.1
    • /
    • pp.30-37
    • /
    • 2005
  • We present an air bridge type electrode system with tunable electrode distance for detecting electroactive biomolecules. It is known that the narrower gap between electrode fingers, the higher sensitivity in IDA (interdigitated array) electrode. In previous researches on IDA electrode, narrower patterning required much precise and expensive equipment as the gap goes down to nanometer scale. In this paper, an improved method is suggested to replace nano gap pattering with downsizing electrode distance and showed that the patterning can be replaced by thickness control using metal deposition methods, such as electroplating or metal sputtering. The air bridge type electrode was completed by the following procedures: gold patterning for lower electrode, copper electroplating, gold deposition for upper electrode, photoresist patterning for gold film support, and copper etching for space formation. The thickness of copper electroplating is the distance between upper and lower electrodes. Because the growth rate of electroplating is $0.5{\mu}m\;min^{-1}$, the distance is tunable up to hundreds of nanometers. Completed electrodes on the same wafer had $5{\mu}m$ electrode distance. The gaps between fingers are 10, 20, 30, and $40{\mu}m$ and the widths of fingers are 10, 20, 30, 40, and $50{\mu}m$. The air bridge type electrode system showed better sensitivity than planar electrode.

Melting Point of Amorphous Copper Phase on Crystalline Silicon Solar Cells During Cold Spray using Molecular Dynamics Calculations (분자 동역학 계산을 통한 결정질 실리콘 태양전지 기판에 콜드 스프레이 전극 형성 시 발생되는 비정질 구리상에 대한 용융 온도 변화 연구)

  • Kim, Soo Min;Kang, Byungjun;Jeong, Sujeong;Kang, Yoonmook;Lee, Hae-seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.3 no.2
    • /
    • pp.61-64
    • /
    • 2015
  • In solar industry, numerous researchers reported about cold spray method among various electrode formation technic, but there are no known a bonding mechanism of metal powder. In this study, a cross-section of copper electrode formed by cold spray method was observed and heterogeneous phase between silicon substrate and copper electrode was analyzed using morphology observation technic. SEM and TEM analysis were performed to analyze a crystallinity and distribution shape of heterogeneous copper phase. Molecular dynamics simulation was performed to calculate glass transition temperature of copper metal. In the result, amorphous copper phase was observed near interface between silicon substrate and metal electrode. The results of the molecular dynamics simulation show that an amorphous copper phase could be formed at a temperature below the melting point of copper because cold spraying resulted in a lower glass transition temperature.

Fabrication of Copper Electrode Array and Test of Electrochemical Discharge Machining for Micro Machining of Glass (유리의 미세 가공을 위한 구리 전극군의 제작과 전기 화학 방전 가공 시험)

  • 정주명;심우영;정옥찬;양상식
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.9
    • /
    • pp.488-493
    • /
    • 2004
  • In this paper, we present the fabrication of copper electrode array and test of electrochemical discharge machining(ECDM) for glass machining. An array of 72 Cu electrodes is used to machine Borofloat33 glass. The height and diameter of a Cu electrode are 400 $\mu\textrm{m}$ and 100 $\mu\textrm{m}$ respectively. It is fabricated by ICP-RIE, Au-Au thermo-compression bonding, and copper electroplating. Borofloat33 glass is machined by the fabricated copper electrode array in 60 seconds at 55 V. The surface roughness of the machined glass is measured and the machined glass is anodically bonded with silicon.

Fabrication of Copper Electrode Array and Test of Electrochemical Discharge Machining for Glass Drilling (유리의 미세 구멍 가공을 위한 구리 전극군 제작 및 전기 화학 방전 가공 시험)

  • Jung, Ju-Myoung;Sim, Woo-Young;Jeong, Ok-Chan;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.297-299
    • /
    • 2003
  • In this paper, we present the fabrication of copper electrode array and test of electrochemical discharge machining for the fabrication of microholes on Borofloat33 glass. Copper electrode array is fabricated by the bonding of silicon upper substrate and lower substrate and copper electroplate. The silicon upper electrode having microholes fabricated by ICP-RIE is the mold of copper electroplate. The lower substrate is used as the seed layer for copper electroplate after Au - Au thermocompression bonding with the upper substrate.

  • PDF