• 제목/요약/키워드: cooling COP

검색결과 368건 처리시간 0.021초

대형 Community 건물의 연료전지 구동 복합열원 하이브리드 히트펌프 냉.난방 시스템 성능 해석 (The Study on the Performance of the Fuel Cell Driven Compound Source Hybrid Heat Pump Heating and Cooling System to Large Community Building)

  • 변재기;정동화;최영돈
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.82-87
    • /
    • 2007
  • In the present study, the simulation on the annual performance evaluation of a renewable energy systems with fuel cell driven compound source hybrid heat pump systems is applied to the heating and cooling of large community building. The large community building has the economical advantage to apply heat pump cooling and heating systems the long period operation. If air and ground source hybrid heat pump systems are combined, COP of the system can be increased largely. Fuel cell driven compound source hybrid heat pump system can reduced the fuel cost as well as thermal storage tank sharply.

  • PDF

인버터 스크롤 압축기를 적용한 루프형 전동공조시스템의 냉방성능특성에 관한 연구 (Study on the Performance Characteristics of the Roof Mounted Electrical Air Conditioning System Using Inverter Scroll Compressor)

  • 이무연;원종필;이동연;조중원
    • 한국산학기술학회논문지
    • /
    • 제12권10호
    • /
    • pp.4308-4313
    • /
    • 2011
  • 본 연구에서는 친환경 대형 버스 차량에 적용되는 루프형 전동식 냉방시스템의 성능특성을 파악하기 위하여 스크롤 압축기의 주파수 및 승차 공간의 온도인 내기온도를 변화시켜가면서 다양한 실험을 진행하였다. 이를 위하여 인버터로 구동되는 전동식 스크롤 압축기를 적용한 냉방시스템을 설계 및 제작 하였고 냉매 충진량 실험을 통하여 루프형 전동식 냉방시스템의 충분한 과냉도를 확보할 수 있는 최적 냉매 봉입량을 선정하였다. 압축기 주파수가 55 Hz에서 65 Hz로 증가함에 따라 냉방시스템의 증발용량은 4.3% 증가하였으나 냉방 COP는 14.1% 감소하였고, 내기온도가 $27^{\circ}C$에서 $35^{\circ}C$로 증가함에 따라 냉방시스템의 증발용량 및 COP는 각각 9.17%와 1.43% 증가하였다. 더불어 전동식 스크롤 압축기를 구동하는 인버터의 작동 효율은 내기온도 변화보다는 압축기 주파수 변화에 더 큰 영향을 받는 것을 확인하였다.

가스인젝션 기술을 적용한 공기열원 가변속 열펌프의 냉방성능 향상에 관한 연구 (The Cooling Performance Enhancement of a Variable Speed Heat Pump Using Gas Injection Technique)

  • 정민우;허재혁;정해원;김용찬
    • 설비공학논문집
    • /
    • 제21권8호
    • /
    • pp.425-432
    • /
    • 2009
  • In this study, the improvement of cooling capacity by applying gas injection technique in a two-stage heat pump using R410A was experimentally investigated. A twin rotary type compressor with gas injection was applied to the heat pump system. The optimum refrigerant charge for the injection and the non-injection cycles was selected to achieve the maximum COP at the cooling standard condition. The injection cycle showed less optimum refrigerant charge than that of the non-injection cycle. The cooling performances of the injection and the non-injection cycles were measured and compared by varying compressor frequency from 40 to 90 Hz. The cooling capacity of the gas injection cycle was 1.6% -11.3% higher than that of the non-injection cycle. The COP of the gas injection cycle was 13.7% to 28.9% higher than that of the non-injection cycle at the same cooling capacity. The heat pump system showed stable operation after 30% of the injection valve opening.

소형 흡수식 냉동기의 성적계수에 관한 실험적 연구 (Experimental Study on the Coefficient of Performance of a Small Absorption Refrigerator)

  • 이선규;김상수
    • 대한설비공학회지:설비저널
    • /
    • 제16권2호
    • /
    • pp.176-184
    • /
    • 1987
  • The purpose of this research is to study the characteristics of the coefficient of perform-ance (COP) of the small absorption refrigeration system. This experimental study is performed with two selected variables, the temperature of the generator and the input temperature of the cooling water. In order to determine the input temperature of the generator which gives maximum COP, the experimental data are obtained with controlling the temperature of the generator in the range of $20-32^{\circ}C$ of the temperature of the cooling water. The range of the generator heat suppling temperature which gives maximum efficiency is about $90-95^{\circ}C.$ The temperature range depends on the characteristics of the equipment unit. The most important result in this experiment is the trends of the COP in accordance with the variation of these temperatures. This trend will furnish the informations and knowledges for designing and operating the absorption refrigerator.

  • PDF

폐온수 이용 제 2 종 흡수식 열펌프의 열역학적 설계해석 (Thermal Design Analysis of an Absorption Heat Transformer for using Waste Hot Water)

  • 강병하;김영인;이춘식
    • 대한설비공학회지:설비저널
    • /
    • 제14권4호
    • /
    • pp.285-292
    • /
    • 1985
  • A computer program for thermal design analysis has been developed to predict the performance of an absorption heat transformer. The effects of temperature boost, cooling water temperature and effectiveness of components on the performance were investigated. Not only the detailed thermodynamic states such as temperatures, concentration of the solution, and mass flow rate at each point of the process but also the heat transfer rate in each component could be easily determined with given input parameters. The system's coefficient of performance (COP) was seen to increase with increased effectiveness of components, decreased temperature boost of hot water, and decreased cooling water temperature. Even though the COP increases with increased effectiveness of the components, the variation in the COP is not substantial above certain values of the effectiveness. A reference design point can be selected on this basis.

  • PDF

핀-관, 평행류 열교환기를 적용한 공조기의 냉방성능 실험연구 (Experimental Study on Cooling Performance of A/C applied Fin-tube and PF Heat Exchangers)

  • 권영철;박윤창;권정태;박경만
    • 한국산학기술학회논문지
    • /
    • 제10권8호
    • /
    • pp.1789-1794
    • /
    • 2009
  • 본 연구에서는 핀-관 열교환기와 평행류(PF) 열교환기를 실외 열교환기로 적용한 공조기의 실내외 온도/습도와 같은 환경변화에 대한 냉방성능을 비교 조사하고자 하였다. KS C 9306의 냉방표준 온도조건을 기준으로 핀-관, 2종류의 PF 열교환기를 적용한 공조기 성능변화를 이해하기 위하여 냉방능력과 COP를 획득하였다. 실험을 위해 공기엔탈피 방식의 칼로리미터를 사용하였다. PF 열교환기는 핀-관 열교환기보다 우수한 열전달 능력을 보였다. 그리고 사각형 핀을 적용한 PF형 공조기의 성능이 삼각형 핀의 경우보다 우수하였다. 실내 토출공기의 유속, 실내온도 그리고 실내상대습도가 높아질수록 냉방능력과 COP는 증가를, 실외온도가 높아질수록 냉방능력과 COP는 감소를, 그러나 실외 상대습도 증가에 따른 성능변화는 미미하였다.

2단압축 상분리 사이클을 적용한 이산화탄소 시스템의 성능향상에 관한 해석적 연구 (Simulation Study on the Performance Improvement of a $CO_2$ System Applying a Two-stage Phase-separate Cycle)

  • 류창기;이호성;김용찬;조흥현;조성욱
    • 설비공학논문집
    • /
    • 제18권8호
    • /
    • pp.641-648
    • /
    • 2006
  • In this study, a two-stage phase-separate cycle was investigated analytically to improve the performance of the $CO_2$ system in the cooling mode. The simulation results were verified with the measured data. The predictions using the simulation model were consistent with the measured data within ${\pm}20%$ deviations. The performance of the modified $CO_2$ system with the two-stage phase-separated cycle was analyzed with the variations of outdoor temperature and EEV opening. The cooling COP decreased with the increase of compressor frequency. The highest COP was 2.7 at compressor frequencies of 30 Hz and 30 Hz for the first and second compressors, respectively. In addition, the cooling COP increased by 9.3% with an application of optimum control of the first and second-stage EEV openings.

증기분사를 적용한 고온수용 지열 히트펌프의 성능특성 (Performance of the Geothermal Heat Pump using Vapor Injection for Hot Water)

  • 박용정;박병덕
    • 한국수소및신에너지학회논문집
    • /
    • 제25권3호
    • /
    • pp.297-304
    • /
    • 2014
  • The purpose of this study is to evaluate the experimental performance characteristics of a water-to-water geothermal heat pump featuring a vapor refrigerant injection for the production of hot water. The performance of geothermal heat pump with a vapor injection was evaluated by comparing with that of a conventional geothermal heat pump without a vapor injection. For heating operation, the geothermal heat pump with a vapor injection is superior in COP and heating capacity. The vapor injection was more effective for supplying hot water while overloading. The vapor injection was effective for the improvement of the cooling capacity. However, the vapor injection was not effective for the increasing of COP according to the increased input of a compressor. The advantage of vapor injection in water-to-water geothermal heat pump become disappeared while cooling operation with lower part loading.

지하수 열원 복수정 지열 열펌프 시스템의 성능에 관한 실험적 연구 (An Experimental Study of Ground Water Source Two Well Type Geothermal Heat Pump System)

  • 임효재;권정태;김창업;공형진;박성구
    • 설비공학논문집
    • /
    • 제21권8호
    • /
    • pp.468-474
    • /
    • 2009
  • Ground water source heat pump system is the oldest one of the ground source heat pump systems. Despite of this, little formal design information has been available until recently. The important design parameters for open system are the identification of optimum ground water flow, heat exchanger selection and well pump. In this study, the capacity of 50 RT system of two well type ground water heat pump system was used. As a result, static water level was -7 m and the level during the heating operation was -32 m, cooling operation was -40 m. The initial static water level recovered within 48 hrs. The temperature of ground water is $15.6^{\circ}C$ for heating season and $16.2^{\circ}C$ for cooling season and does not depend on the outdoor temperature. Operation efficiency of the system shows that, COP 3.1 for heating and COP 4.2 for cooling.

부하변화에 따른 hot-gas 바이패스 방식별 성능 비교 (Performance Comparison of Hot-gas Bypass Types with the Variation of Refrigeration Load)

  • 백승문;윤정인;손창효;허정호
    • 동력기계공학회지
    • /
    • 제18권5호
    • /
    • pp.48-54
    • /
    • 2014
  • In this paper, three refrigeration systems bypassing hot-gas to compressor outlet, compressor and condenser outlet and evaporator inlet are theoretically compared to offer basic design data for performance depending on cooling load using a HYSYS program. The main results are summarized as follows : First, the COP of third system is the highest. Next, the COP of second system is higher than first one. And, the temperature of compressor inlet of third system is constant for all cooling load. Compared to first and second system, the compressor inlet temperature of the first system is higher than second one for all cooling loads. From the above results, third system, which is bypassing hot-gas to evaporator inlet, is more advantageous when considering the precise temperature control and excellent performance of oil and water cooler of industrial machine.