• 제목/요약/키워드: convex space

검색결과 408건 처리시간 0.022초

CLOSED CONVEX SPACELIKE HYPERSURFACES IN LOCALLY SYMMETRIC LORENTZ SPACES

  • Sun, Zhongyang
    • 대한수학회보
    • /
    • 제54권6호
    • /
    • pp.2001-2011
    • /
    • 2017
  • In 1997, H. Li [12] proposed a conjecture: if $M^n(n{\geqslant}3)$ is a complete spacelike hypersurface in de Sitter space $S^{n+1}_1(1)$ with constant normalized scalar curvature R satisfying $\frac{n-2}{n}{\leqslant}R{\leqslant}1$, then is $M^n$ totally umbilical? Recently, F. E. C. Camargo et al. ([5]) partially proved the conjecture. In this paper, from a different viewpoint, we study closed convex spacelike hypersurface $M^n$ in locally symmetric Lorentz space $L^{n+1}_1$ and also prove that $M^n$ is totally umbilical if the square of length of second fundamental form of the closed convex spacelike hypersurface $M^n$ is constant, i.e., Theorem 1. On the other hand, we obtain that if the sectional curvature of the closed convex spacelike hypersurface $M^n$ in locally symmetric Lorentz space $L^{n+1}_1$ satisfies $K(M^n)$ > 0, then $M^n$ is totally umbilical, i.e., Theorem 2.

COMMON FIXED POINTS OF ASYMPTOTICALLY NONEXPANSIVE MAPPINGS BY ONE-STEP ITERATION PROCESS IN CONVEX METRIC SPACES

  • Abbas, Mujahid;Khan, Safeer Hussain;Kim, Jong-Kyu
    • East Asian mathematical journal
    • /
    • 제26권5호
    • /
    • pp.693-702
    • /
    • 2010
  • We study one-step iteration process to approximate common fixed points of two nonexpansive mappings and prove some convergence theorems in convex metric spaces. Using the so-called condition (A'), the convergence of iteratively defined sequences in a uniformly convex metric space is also obtained.

BEST APPROXIMATIONS FOR MULTIMAPS ON ABSTRACT CONVEX SPACES

  • Park, Sehie
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권1호
    • /
    • pp.165-175
    • /
    • 2021
  • In this article we derive some best approximation theorems for multimaps in abstract convex metric spaces. We are based on generalized KKM maps due to Kassay-Kolumbán, Chang-Zhang, and studied by Park, Kim-Park, Park-Lee, and Lee. Our main results are extensions of a recent work of Mitrović-Hussain-Sen-Radenović on G-convex metric spaces to partial KKM metric spaces. We also recall known works related to single-valued maps, and introduce new partial KKM metric spaces which can be applied our new results.

DEFORMATION SPACES OF CONVEX REAL-PROJECTIVE STRUCTURES AND HYPERBOLIC AFFINE STRUCTURES

  • Darvishzadeh, Mehdi-Reza;William M.Goldman
    • 대한수학회지
    • /
    • 제33권3호
    • /
    • pp.625-639
    • /
    • 1996
  • A convex $RP^n$-structure on a smooth anifold M is a representation of M as a quotient of a convex domain $\Omega \subset RP^n$ by a discrete group $\Gamma$ of collineations of $RP^n$ acting properly on $\Omega$. When M is a closed surface of genus g > 1, then the equivalence classes of such structures form a moduli space $B(M)$ homeomorphic to an open cell of dimension 16(g-1) (Goldman [2]). This cell contains the Teichmuller space $T(M)$ of M and it is of interest to know what of the rich geometric structure extends to $B(M)$. In [3], a symplectic structure on $B(M)$ is defined, which extends the symplectic structure on $T(M)$ defined by the Weil-Petersson Kahler form.

  • PDF

Coincidences of composites of u.s.c. maps on h-spaces and applications

  • Park, Seh-Ie;Kim, Hoon-Joo
    • 대한수학회지
    • /
    • 제32권2호
    • /
    • pp.251-264
    • /
    • 1995
  • Applications of the classical Knaster-Kuratowski-Mazurkiewicz (si-mply, KKM) theorem and the fixed point theory of multifunctions defined on convex subsets of topological vector spaces have been greatly improved by adopting the concept of convex spaces due to Lassonde [L1]. In this direction, the first author [P5] found that certain coincidence theorems on a large class of composites of upper semicontinuous multifunctions imply many fundamental results in the KKM theory.

  • PDF

A LOWER ESTIMATE OF THE BANACH-MAZUR DISTANCES ON THE QUASI-NORMED SPACES

  • Kang, JeongHeung
    • Korean Journal of Mathematics
    • /
    • 제7권2호
    • /
    • pp.207-213
    • /
    • 1999
  • In this paper we estimate a lower bound of the Banach-Mazur distance between a finite dimensional nonlocally convex space and its Banach envelope space by investigating the properties of the nonlocally convex space and the projection constant which are obtained by factoring the identity operator through $l^k_{\infty}$ on the quasi-normed spaces.

  • PDF

COLLECTIVE FIXED POINTS FOR GENERALIZED CONDENSING MAPS IN ABSTRACT CONVEX UNIFORM SPACES

  • Kim, Hoonjoo
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권1호
    • /
    • pp.93-104
    • /
    • 2021
  • In this paper, we present a fixed point theorem for a family of generalized condensing multimaps which have ranges of the Zima-Hadžić type in Hausdorff KKM uniform spaces. It extends Himmelberg et al. type fixed point theorem. As applications, we obtain some new collective fixed point theorems for various type generalized condensing multimaps in abstract convex uniform spaces.

FIXED POINTS OF COUNTABLY CONDENSING MULTIMAPS HAVING CONVEX VALUES ON QUASI-CONVEX SETS

  • Hoonjoo Kim
    • 충청수학회지
    • /
    • 제36권4호
    • /
    • pp.279-288
    • /
    • 2023
  • We obtain a Chandrabhan type fixed point theorem for a multimap having a non-compact domain and a weakly closed graph, and taking convex values only on a quasi-convex subset of Hausdorff locally convex topological vector space. We introduce the definition of Chandrabhan-set and find a sufficient condition for every countably condensing multimap to have a relatively compact Chandrabhan-set. Finally, we establish a new version of Sadovskii fixed point theorem for multimaps.

Supercyclicity of Convex Operators

  • Hedayatian, Karim;Karimi, Lotfollah
    • Kyungpook Mathematical Journal
    • /
    • 제58권1호
    • /
    • pp.81-90
    • /
    • 2018
  • A bounded linear operator T on a Hilbert space ${\mathcal{H}}$ is convex, if for each $x{\in}{\mathcal{H}}$, ${\parallel}T^2x{\parallel}^2-2{\parallel}Tx{\parallel}^2+{\parallel}x{\parallel}^2{\geq}0$. In this paper, it is shown that if T is convex and supercyclic then it is a contraction or an expansion. We then present some examples of convex supercyclic operators. Also, it is proved that no convex composition operator induced by an automorphism of the disc on a weighted Hardy space is supercyclic.