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A LOWER ESTIMATE OF THE BANACH-MAZUR
DISTANCES ON THE QUASI-NORMED SPACES

JeongHeung Kang

Abstract. In this paper we estimate a lower bound of the Banach-

Mazur distance between a finite dimensional nonlocally convex

space and its Banach envelope space by investigating the properties
of the nonlocally convex space and the projection constant which

are obtained by factoring the identity operator through lk∞ on the

quasi-normed spaces.

1. Introduction

In this article, we give some lower estimates for the Banach-Mazur
distances between finite-dimensional quasi-Banach spaces and its Ba-
nach envelope spaces, analogous to known results for Banach spaces.

In 1948, F. John proved that if E is a n-dimensional Banach space
then d(E, ln1 ) ≤

√
n where dimE = n. For the quasi-Banach space

E, S. J. Dilworth proved that d(E, ln2 ) ≤ n1/p−1/2 in 1985. (see [1,
theorem 2])

Also, if E is a n-dimensional quasi-normed space and Eb its Banach
envelope space with norm given by the

|‖x‖| = inf{λ ∈ R| x ∈ λco(BE)}

where co(BE) = co{x ∈ E| ‖x‖ ≤ 1}, then

(1.1) d(E,Eb) ≤ n1/p−1

which is due to S. J. Dilworth: see ([1]). In this parallel of question,
we can see that if (E, ‖ ·‖) is a n−dimensional p−convex quasi-normed

Received June 2, 1999.

1991 Mathematics Subject Classification: 46B03.
Key words and phrases: Banach-Mazur distance, Banach envelope, quasi-

normed space.

Partially supported by the Hwa Rang Dae Institute



208 JeongHeung Kang

space, then d(E, lnp ) ≤ n1/p : see ([7]). Moreover if we restrict con-
ditions on E, we can see a better upper bound of d(E, lnp ) as follow-
ing. For 2/3 < p < 1 there is a constant Cp such that if E is any
n−dimensional symmetric p−convex space, then

(1.2) d(E, lnp ) ≤ Cpn
2/p−3/2,

which is due to Peck : see more details in ([7]).
From now we are concerned with the lower estimates of the Banach-

Mazur distance between the quasi-normed space E and its envelope
space Eb. For the study of these questions, we need a definition which
was given by Peck in ([6]).

Definition 1.1. Let E be a quasi-normed space and let T : E −→
lk∞ be an embedding map and P : lk∞ −→ E be a projection map.
Consider the following diagram.

(1.3)
E

IdE−→ E
T ↓ ↗ P
lk∞

Define
λ(E) = inf{‖P‖‖T‖ |IdE = PT},

where the infimum is taken over all factorizations IdE = PT as given
above diagram.

When E is lnp , 1 ≤ p, the constant is known: see the references given
for that theorem ([8, theorem 32.9 p254]). For p < 1, Peck proved that
the lower estimate λ(lnp ) is ≥ Cn1/p−1/2(log n)−1/2 in ([6]).

2. A lower estimates of d(E,Eb).

From these ideas, we will give a lower estimate of d(E,Eb) where E
is a quasi-normed space and Eb its envelope space.

Lemma 2.1. Let E be a n−dimensional quasi-Banach space and Eb

its Banach envelope space. Then d(E,Eb) ≥ λ(E)/λ(Eb).
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Proof. Let E be a n−dimensional quasi-Banach space and Eb its
Banach envelope space and let T : E −→ Eb be an isomorphism.
Consider the following commutative diagrams,

(2.1)
Eb

Id
Eb−→ Eb

T ↑ ↓ T−1

E
IdE−→ E

and

(2.2)
Eb

Id
Eb−→ Eb

u1 ↓ ↗ u2

lk∞

Then by combining two diagrams(2.1) and (2.2) and by the definition
of projection constant λ(E), we can have

λ(E) = inf{‖u1T‖‖T−1u2‖ : u1 : Eb → lk∞, u2 : lk∞ → Eb}
≤ ‖u1T‖‖T−1u2‖
≤ ‖u1‖‖u2‖‖T‖‖T−1‖.

Next, taking the infimum over all isomorphisms T : E −→ Eb, we have

λ(E) ≤ ‖u1‖‖u2‖d(E,Eb).

Finally, taking the infimum over all imbeddings u1 : Eb −→ lk∞ and all
projections u2 : lk∞ −→ Eb, we can have

(2.3) λ(E) ≤ λ(Eb)d(E,Eb).

Therefore we have
d(E,Eb) ≥ λ(E)/λ(Eb).

This proves the lemma. �

From this lemma, we will investigate a lower estimate of d(lnp , (lnp )b)
where 0 < p < 1. As we knew that the Banach envelope of lnp is ln1 , we
see

(2.4) d(lnp , (lnp )b) = d(lnp , ln1 ).

For these spaces, we can find a positive function f on [1,∞)× (0, 1)
such that d(lnp , (lnp )b) ≥ cf(n, p) where c is a universal constant.
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Theorem 2.2. Let 0 < p < 1 and E = lnp . Then there exists a

positive function f on [1,∞) × (0, 1) such that d(lnp , (lnp )b) ≥ cf(n, p)
where c is a universal constant.

Proof. For 0 < p < 1, as we saw the Banach envelope of lnp is ln1 ,
and so by (2.4) we have d(lnp , (lnp )b) = d(lnp , ln1 ).

Now by ([6, corollary 2]) we can see that

(2.5) λ(E) ≥ Cn
1
p−

1
2 (log n)−

1
2 .

Also, by the ([3] and [8, theorem 32.8]) we have

λ(ln1 ) =
{

≤
√

n for complex case,
2−n

∑n
k=1

(
n
k

)
|n− 2k| for the real case.

Hence applying the lemma 2.1, we can have
i) For the complex case

d(lnp , ln1 ) ≥ C
n

1
p−

1
2 (log n)−

1
2

n1/2

= Cn
1
p−1(log n)−

1
2 ,(2.6)

ii) For the real case,

d(lnp , ln1 ) ≥ C
n

1
p−

1
2 (log n)−

1
2

2−n
∑n

n=1

(
n
k

)
|n− 2k|

= Cf(n, p),(2.7)

where f(n, p) = n
1
p
− 1

2 (log n)−
1
2 2n

2−n
∑n

n=1 (n
k )|n−2k|

. This proves the theorem. �

We don’t know yet, whether this lower estimate of the d(lnp , (lnp )b)
is sharp or not. Nevertheless, we found a function f which depends
only on dimension of the given quasi-normed space. We studied typical
quasi-normed space lnp and its Banach envelope space (lnp )b in the the-
orem 2.2. Moreover to get a lower estimate of Banach Mazur distance,
we used mainly known facts which were the ([6, corollary 2]) and the
([8, theorem 32.8]).

In this parallel of the question we can ask that if E is just a finite
dimensional quasi-normed space, does there exist a positive function f
on [1,∞) such that d(E,Eb) ≥ Cf(n), where C is a universal constant
independent of n ? For this question we can give the partial answer as
following.
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Theorem 2.3. Let E be a n-dimensional quasi-normed space.
Then there exists a positive function f on [1,∞) and also depend-
ing on space E such that d(E,Eb) ≥ Cf(n) where C is a universal
constant independent of n.

Proof. By the lemma 2.1, we know that d(E,Eb) ≥ λ(E)/λ(Eb).
Since (Eb, |‖ · ‖|) is a Banach space with dimension n, we knew that

the upper bound of λ(Eb) is

(2.8) λ(Eb) ≤
√

n

in the ([3] and [8, theorem 32.8]). Moreover by the ([6, corollary 1]),
we have

(2.9) λ(E) ≥ sn(n log n)
1
2 ,

where sn = sup‖Tei‖≤1
1≤i≤n

inf±1 ‖
∑n

i=1±ei‖.

Then applying the lemma 2.1, (2.8) and (2.9) we have

d(E,Eb) ≥ Csn(n log n)
1
2

√
n

= Csn(log n)
1
2

= Cf(n).(2.10)

where f(n) = sn(log n)
1
2 . This proves the theorem. �

In the above theorem 2.3, we only have a function f on [1,∞) which
is also depending on the given quasi-normed space E . So the lower
estimate of d(E,Eb) is variable depending on the given quasi-Banach
space E. To get the better lower estimate, we must overcome the
nonlocally convexity of the quasi-normed space E. But this question
is still open. For this parallel of question, if we restrict the condition
on the quasi-normed space E, we can get a lower estimate of d(E,Eb)
which is independent on the given space E. To study this we need a
technical lemma.

Lemma 2.4. Let 0 < p < 1 and E be a p−convex quasi-normed
space. Then the Banach-Mazur distance d(E, lnp ) ≤ n2/p−1 and

d(Eb, lnp ) ≤ n1/p.
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Proof. From the submultiplicative property of the Banach-Mazur
distance coefficient, we can have

d(E, lnp ) ≤ d(lnp , ln2 )d(ln2 , E)

≤ n1/p−1/2n1/p−1/2

= n2/p−1.(2.11)

By the same argument as above and using the F. John’s theorem [2],
we can see

(2.12) d(Eb, lnp ) ≤ n1/p.

This proves the lemma. �

Now let E be a p−convex quasi-normed space. Then there exists
a positive function f on [1,∞) such that d(E,Eb) ≥ f(n) where f is
depending only on n. Since

d(lnp , lnp ) ≤ d(lnp , E)d(E,Eb)d(Eb, lnp ).

we have

d(E,Eb) ≥ 1
d(lnp , E) · d(Eb, lnp )

≥ 1
n1/p · n2/p−1

= n1−3/p.

Combining the above and the ([1, theorem 2]) , for the p−convex
quasi-normed space we can have n1−3/p ≤ d(E,Eb) ≤ n1/p−1/2.
Though this lower estimate of d(E,Eb) may not be sharp, we can
overcome the nonconvexity of the quasi-normed space E.

In this parallel of the question, if we restrict p = log 2/ log 2C where
C is the quasi-norm constant, we can have a lower estimate of the
Banach-Mazur distance d(E, ln2 ) as the following.
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Theorem 2.5. Let E be a n−dimensional quasi-Banach space with
quasi-norm constant C and let p = (log 2/ log 2C). Then we have

d(E, ln2 ) ≥ λ(E)/cn
1

where cn
1 =

∫
Sn−1 |x1|dµ(x) in the real case and cn

1 =
∫

S̃n−1 |z1|dµ̃(z)
in the complex and a1 ≤ cn

1 ≤ 1 (a1 is the first absolute Gaussian
Moment).

Proof. By the lemma 2.1 we can have d(E, ln2 ) ≥ λ(E)/λ(ln2 ). And
by the ([8, theorem 32.8]) we see λ(ln2 ) = Cn

1

√
n ∼

√
n. Therefore we

have

d(E, ln2 ) ≥ λ(E)/λ(ln2 )

≥ λ(E)/cn
1

√
n

where a1 ≤ cn
1 ≤ 1 and a1 is the first absolute Gaussian Moment. This

proves the theorem. �
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