• Title/Summary/Keyword: convex optimization

Search Result 382, Processing Time 0.025 seconds

Joint Optimization Algorithm Based on DCA for Three-tier Caching in Heterogeneous Cellular Networks

  • Zhang, Jun;Zhu, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2650-2667
    • /
    • 2021
  • In this paper, we derive the expression of the cache hitting probability with random caching policy and propose the joint optimization algorithm based on difference of convex algorithm (DCA) in the three-tier caching heterogeneous cellular network assisted by macro base stations, helpers and users. Under the constraint of the caching capacity of caching devices, we establish the optimization problem to maximize the cache hitting probability of the network. In order to solve this problem, a convex function is introduced to convert the nonconvex problem to a difference of convex (DC) problem and then we utilize DCA to obtain the optimal caching probability of macro base stations, helpers and users for each content respectively. Simulation results show that when the density of caching devices is relatively low, popular contents should be cached to achieve a good performance. However, when the density of caching devices is relatively high, each content ought to be cached evenly. The algorithm proposed in this paper can achieve the higher cache hitting probability with the same density.

Sequential Convex Programming Based Performance Analysis of UAV Design (순차 컨벡스 프로그래밍 기반 무인기 설계 형상의 성능 분석)

  • Ko, Hyo-Sang;Choi, Hanlim;Jang, Jong-Youn;Kim, Joon;Ryu, Gu-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.11
    • /
    • pp.771-781
    • /
    • 2022
  • Sequential convex programming based performance analysis of the designed UAV is performed. The nonlinear optimization problems generated by aerodynamics are approximated to socond order program by discretization and convexification. To improve the performance of the algorithm, the solution of the relaxed problem is used as the initial trajectory. Dive trajectory optimization problem is analyzed through iterative solution procedure of approximated problem. Finally, the maximum final velocity according to the performance of the actuator model was compared.

Beam pattern analysis for beam homogenization of conformal array sonar (곡면 배열 소나의 빔 균일화를 위한 빔 패턴 분석)

  • Jeong-Ung, Choi;Wooyoung, Hong;Jun-Seok, Lim;Keunhwa, Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.637-646
    • /
    • 2022
  • Sub-arrays of arbitrary conformal array have different geometric shape through steering direction, thus the beam patterns of sub-arrays are always non-uniform. In this paper, we apply the beam pattern synthesis method using convex optimization into the conformal array, and shows the improvement of uniformity of beam performance. The simulation is performed with the conformal array of cut-sphere shape. As a result, the standard deviation of 3 dB beamwidth in elevation is greatly reduced but the directivity index is also reduced. To alleviate this trade-off, we propose a convex optimization using a shading function.

Design of Robust Support Vector Machine Using Genetic Algorithm (유전자 알고리즘을 이용한 강인한 Support vector machine 설계)

  • Lee, Hee-Sung;Hong, Sung-Jun;Lee, Byung-Yun;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.375-379
    • /
    • 2010
  • The support vector machine (SVM) has been widely used in variety pattern recognition problems applicable to recommendation systems due to its strong theoretical foundation and excellent empirical successes. However, SVM is sensitive to the presence of outliers since outlier points can have the largest margin loss and play a critical role in determining the decision hyperplane. For robust SVM, we limit the maximum value of margin loss which includes the non-convex optimization problem. Therefore, we proposed the design method of robust SVM using genetic algorithm (GA) which can solve the non-convex optimization problem. To demonstrate the performance of the proposed method, we perform experiments on various databases selected in UCI repository.

Beamforming Optimization for Multiuser Two-Tier Networks

  • Jeong, Young-Min;Quek, Tony Q.S.;Shin, Hyun-Dong
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.327-338
    • /
    • 2011
  • With the incitation to reduce power consumption and the aggressive reuse of spectral resources, there is an inevitable trend towards the deployment of small-cell networks by decomposing a traditional single-tier network into a multi-tier network with very high throughput per network area. However, this cell size reduction increases the complexity of network operation and the severity of cross-tier interference. In this paper, we consider a downlink two-tier network comprising of a multiple-antenna macrocell base station and a single femtocell access point, each serving multiples users with a single antenna. In this scenario, we treat the following beamforming optimization problems: i) Total transmit power minimization problem; ii) mean-square error balancing problem; and iii) interference power minimization problem. In the presence of perfect channel state information (CSI), we formulate the optimization algorithms in a centralized manner and determine the optimal beamformers using standard convex optimization techniques. In addition, we propose semi-decentralized algorithms to overcome the drawback of centralized design by introducing the signal-to-leakage plus noise ratio criteria. Taking into account imperfect CSI for both centralized and semi-decentralized approaches, we also propose robust algorithms tailored by the worst-case design to mitigate the effect of channel uncertainty. Finally, numerical results are presented to validate our proposed algorithms.

Document Summarization via Convex-Concave Programming

  • Kim, Minyoung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.293-298
    • /
    • 2016
  • Document summarization is an important task in various areas where the goal is to select a few the most descriptive sentences from a given document as a succinct summary. Even without training data of human labeled summaries, there has been several interesting existing work in the literature that yields reasonable performance. In this paper, within the same unsupervised learning setup, we propose a more principled learning framework for the document summarization task. Specifically we formulate an optimization problem that expresses the requirements of both faithful preservation of the document contents and the summary length constraint. We circumvent the difficult integer programming originating from binary sentence selection via continuous relaxation and the low entropy penalization. We also suggest an efficient convex-concave optimization solver algorithm that guarantees to improve the original objective at every iteration. For several document datasets, we demonstrate that the proposed learning algorithm significantly outperforms the existing approaches.

Quasiconcave Bilevel Programming Problem

  • Arora S.R.;Gaur Anuradha
    • Management Science and Financial Engineering
    • /
    • v.12 no.1
    • /
    • pp.113-125
    • /
    • 2006
  • Bilevel programming problem is a two-stage optimization problem where the constraint region of the first level problem is implicitly determined by another optimization problem. In this paper we consider the bilevel quadratic/linear fractional programming problem in which the objective function of the first level is quasiconcave, the objective function of the second level is linear fractional and the feasible region is a convex polyhedron. Considering the relationship between feasible solutions to the problem and bases of the coefficient submatrix associated to variables of the second level, an enumerative algorithm is proposed which finds a global optimum to the problem.

Finite Step Method for the Constrained Optimization Problem in Phase Contrast Microscopic Image Restoration

  • Adiya, Enkhbolor;Yadam, Bazarsad;Choi, Heung-Kook
    • Journal of Multimedia Information System
    • /
    • v.1 no.1
    • /
    • pp.87-93
    • /
    • 2014
  • The aim of microscopic image restoration is to recover the image by applying the inverse process of degradation, and the results facilitate automated and improved analysis of the image. In this work, we consider the problem of image restoration as a minimization problem of convex cost function, which consists of a least-squares fitting term and regularization terms with non-negative constraints. The finite step method is proposed to solve this constrained convex optimization problem. We demonstrate the convergence of this method. Efficiency and restoration capability of the proposed method were tested and illustrated through numerical experiments.

  • PDF

ON GLOBAL EXPONENTIAL STABILITY FOR CELLULAR NEURAL NETWORKS WITH TIME-VARYING DELAYS

  • Kwon, O.M.;Park, Ju-H.;Lee, S.M.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.961-972
    • /
    • 2008
  • In this paper, we consider the global exponential stability of cellular neural networks with time-varying delays. Based on the Lyapunov function method and convex optimization approach, a novel delay-dependent criterion of the system is derived in terms of LMI (linear matrix inequality). In order to solve effectively the LMI convex optimization problem, the interior point algorithm is utilized in this work. Two numerical examples are given to show the effectiveness of our results.

  • PDF

Convex Optimization Approach to Multi-Level Modulation for Dimmable Visible Light Communications under LED Efficiency Droop

  • Lee, Sang Hyun;Park, Il-Kyu;Kwon, Jae Kyun
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.29-35
    • /
    • 2016
  • This paper deals with a design method and capacity loss of an efficient multi-level modulation scheme for dimmable visible light communications (VLC) systems that use light-emitting diodes (LEDs) with efficiency droop. To this end, the impact of such an impairment on dimmable VLC is addressed with respect to multi-level modulations based on pulse-amplitude modulation (PAM) via data-rate optimization formulation.