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Abstract

Document summarization is an important task in various areas where the goal is to select
a few the most descriptive sentences from a given document as a succinct summary. Even
without training data of human labeled summaries, there has been several interesting existing
work in the literature that yields reasonable performance. In this paper, within the same unsu-
pervised learning setup, we propose a more principled learning framework for the document
summarization task. Specifically we formulate an optimization problem that expresses the
requirements of both faithful preservation of the document contents and the summary length
constraint. We circumvent the difficult integer programming originating from binary sentence
selection via continuous relaxation and the low entropy penalization. We also suggest an
efficient convex-concave optimization solver algorithm that guarantees to improve the original
objective at every iteration. For several document datasets, we demonstrate that the proposed
learning algorithm significantly outperforms the existing approaches.
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1. Introduction

Document summarization is the task of automatic generation of a succinct summary or gist
from a document or multiple related documents. While it has a relatively long (more than
50 years) history of research in natural language processing (NLP), text mining, and related
fields, the document summarization has received unprecedented attention recently due to the
enormous amount of text, news, blogs, or web pages data that need to be processed efficiently.
For instance, in search engines today like Google, the top-ranked web pages relevant to a
user query are shown with their titles, links, and the informative summaries (called snippets)
of web pages in the most descriptive 20 to 30 words. That is, more accurate and efficient
document summarization algorithms are highly demanding.

As there are several variants of document summarization, here we clarify the exact problem
definition that we are going to deal with in this paper. First, there are two different tasks of
summarization depending on the output forms: the extractive summary selects sentences from
a document (i.e., a summary consists of copies of sentences from a document), while the
abstractive summary aims to produce rephrased summary by understanding the key idea of
the document in different words from those in the document. Of course, the latter task is more

challenging and a long-term goal, and in this paper we focus on the extractive summary task.
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Also, the summary task can be either query-based or general.
The former aims to generate a summary that are relevant to
specific user queries, while the latter outputs a gist of a docu-
ment in a general sense. In this paper we deal with the general
extractive summary task.

Moreover, in the learning/optimization point of view, the
summarization task can be categorized into either supervised
or unsupervised. It is based on whether one is given an offline
(training) data of pairs of summaries and documents. Despite
the fact that collecting human supervised data (manual sum-
maries) is very expansive, in current research it is often yet
difficult to exploit the supervised data effectively. Several pro-
posed supervised summarization algorithms often underperform
unsupervised methods that do not require manually supervised
summary data. For the very reason that collecting human sum-
mary supervision is expensive, in this paper we deal with the
unsupervised learning setup.

Perhaps, the pioneering research in (unsupervised) document
summarization is the work by Luhn [1]], in which he introduced
the so-called significance factor of a sentence. The significance
factor is typically derived from the number of occurrences of the
significant words in the sentence where the word significance is
defined by weighted word occurrence scores or other statistical
indexes [2]]. Then the top ranked sentences in terms of the
significance factor are selected as a summary sentence. The
approach is quite simple, but so effective that it is comparable
to even current state-of-the-arts.

More sophisticated summarization approaches have been
proposed later on. Enumerating all the related work is impos-
sible, and here we list a few important previous approaches.
The probabilistic approaches in general aim to represent the
statistical process of generating words in a sentence where the
distributions are differentiated depending on the importance of a
sentence. While the Naive Bayes model [3] assumes word-wise
independency for computational simplicity, the restriction is
relaxed to yield more flexible models by incorporating sequen-
tial dependency (i.e., word ordering in sentences): the hidden
Markov models [4]] or conditional log-linear models [5]. The
discriminative approaches like neural network training [6] often
results in more accurate summarization due to the rich rep-
resentational capacity in possibly deep network architectures.
However, these approaches are mostly based on supervised
learning, suffering from the cost of collecting lots of labeled
data (i.e., summaries manually given by humans). Even more
recently, the sub-modular optimization techniques have been
proposed [7] that greedily finds the most descriptive sentences.
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In this paper we propose a fairly simple but very efficient
algorithm for document summarization. We formulate a reason-
able optimization problem that expresses the requirements of
both faithful preservation of the document contents and the sum-
mary length constraint. The difficulty of integer programming
originating from binary selection variables, is circumvented by
real value relaxation and the low entropy penalization. The re-
laxed/approximated problem becomes an instance of a tractable
convex-concave optimization, and we provide an efficient solu-
tion method that iteratively upper-bounds and solves the original
problem. Tested on some real-world news document data, the
proposed approach is shown to produce more plausible sum-
maries than existing/baseline methods.

The rest of the paper is organized as follows. After introduc-
ing formal notations and discussing some baseline document
summarization methods in Section [2] our main approach of
convex-concave formulation of the problem is described in
Section 3] The empirical results of the proposed method are
provided in Section 4] followed by concluding remarks.

2. Baselines for Document Summarization

In this section we introduce some notations that are used through-
out the paper, and describe several baseline unsupervised ap-
proaches that can yield reasonable document summarization
results.

A document is comprised of words from the vocabulary set
V of size V. In text mining and natural language processing,
it is typical to have a vector representation for a document
(or sentence), and the most popular one is the so-called term-
[frequency (tf) vector that counts the frequency of each word that
occurs in a document (or sentence). Formally, one denotes the
tf vector by [tf1,tf2, ..
the number of times the term ¢, occurs in the document (or

. tfv]T, a V-dim vector where t f, =

sentence).

While the tf representation captures salient features about
a document/sentence, it cares about the frequencies of words,
treating every word equally important. This is counter-intuitive
in that certain stop words (e.g., articles a or the) usually ap-
pear the most frequently, thus are considered the most signifi-
cant. To avoid this drawback, one needs to discount the impor-
tance of such stop words by multiplying the so-called inverse
L idfy] € RV
where idfy, = log(dflk) and dfy, = the number of training doc-

document frequencies (idf) vector [idf1, idfs, . .

uments that contain the word ¢; among a set of n documents.
This results in the tf-idf vector that has the ¢ fi - idfy as the k-th
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entry. In the tf-idf representation, relatively unique terms (low
dft,) are highly focused, while ubiquitous terms (high dfy,) like
stop words are effectively ignored.

Now we discuss several reasonable baseline approaches for
document summarization. Although these approaches look
simple, they often quite successful in producing plausible sum-
maries of a document. In the extractive summary task, the
goal is to select (at most) b sentences from a document that
best describes the whole document. The first method is simply
select the first b sentences from a document. The rationale is
that often authors/writers tend to put their main themes or ideas
at the beginning of a document. This approach is denoted by
First-b.

The second approach is the significance factor method intro-
duced in [1]]. Specifically, we evaluate the tf-idf vector for the
whole document to assign the importance score to each word.
Then we evaluate the significance score for each sentence as the
sum of the importance scores of the constituting words. Then
we select b highest scored sentences as a summary. We denote
this classical but quite successful approach by Luhn58.

For the third baseline, one can come up with a fairly reason-
able probabilistic (e.g., Gaussian) density model for represent-
ing the sentence generation process. More formally, for a docu-
ment comprised of m sentences, we let a; be the feature vector
(e.g., tf or tf-idf) for the sentence ¢ (: = 1,...,m). One can
then consider an underlying Gaussian density model P(a) =
N (a; 1, X)) from which the sentence feature vectors a;’s are
generated independently. Under this modeling assumption, the
model parameters ; and X can be identified by maximum like-
lihood estimation (To avoid overfitting the Gaussian covariance
might be restricted to be diagonal or isotropic), which simply

1

results in sample mean and covariance (i.e., = = > a;

and ¥ = -5 3" (a; — p)(a; — )", where m/ can be either
m (biased) or m — 1 (unbiased)). Once the model is estimated,
the summary can be formed by selecting b sentences that have
the highest likelihood scores P(a’) among i = 1,...,m. This

approach is denoted by Gaussian.

3. Our Approach

In this section we propose our document summarization formu-
lation. For a document comprised of m sentences, we assign
the binary variable x; for each sentence 7 (: = 1, ..., m), where
z; = 1 (or 0) indicates that the sentence 1 is selected (or not)
as a summary. The selection vector x is thus m-dimensional
binary vector we should choose. The summary of the document
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is then represented as a feature vector contingent on x, denoted
by ®(z). If we use the term-frequency representation for each
sentence, for instance, ®(z) is the sum of the tf-vectors for the
sentences selected as a summary (i.e., those with z; = 1). Nat-
urally, selecting all sentences as summary, that is, having the
summary feature ®(e) where e is the m-dim vector with entries
all 1, captures whole contents of the document. Of course, we
usually have a length limit for a summary, say we are allowed
to choose at most b sentences as a summary. Then the goal is
to make the summary features as close as the full-document
features ®(e). This can be formulated as the following opti-
mization:

min [|B(e) — ®(2)]> (1)

st. e’z <b, xe{0,1}™.

In (1) the constraint e ' 2 < b encodes the summary length
limit discussed before. It is also worth noting that while we
employ the number of sentences as a summary length limit,
one can incorporate more general budget constraint. Defining
c as the m-dim vector of cost where ¢; is a cost of selecting
the sentence ¢ and letting b as a budget limit in general, the
constraint ¢ 'z < b can be quite expressive. For instance, by
having c¢; be the number of words in the sentence ¢ and b be
the word count limit for a summary, we obviously restrict the
number of words in a summary by ¢’z < b. Although in
we rather use ¢ = e to constrain the number of sentences (b) in
a summary, our subsequent derivations apply straightforwardly
to general situations with little modification.

However, the problem of @), as can be reduced to the fa-
mous knapsack problem, is NP hard. We will propose a series
of relaxation and approximation methods to yield a tractable
optimization problem, followed by an efficient solution method.
First the integer-valued z is relaxed to real valued in the in-
terval [0, 1]. That is, instead of all-or-nothing hard selection
of sentences, we do a sort of soft selection: x; close to 1 (0)
means the sentence 7 is more likely to be selected, and vice
versa. However, one needs to enforce the selection variables
to have strong confidence in selection decision, namely having
them close to O or 1, not around 0.5 which can incur ambiguity
in final sentence selection stage. For this purpose we add the
regularization term to the objective to penalize large entropy
for each x; value. More specifically, our relaxed approximate
optimization is formulated as follows.

mzinll@(e)*‘P(JE)H”)\ZH(%), 2
i=1
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s.t. eTargb, 0<z<e,

where the inequalities 0 < x < e in the constrains are element-
wise. In the objective H (z;) = —z; log(x;) — (1 — ;) log(1 —
x;) is the entropy of the selection confidence for the sentence
1, which takes a small value for = close to either O or 1, and
vice versa. The two terms in the objective are balanced by the
trade-off parameter A (> 0).

To be more concrete, notice that the first term in the objective
is convex quadratic in x. If we use the tf vector representation
(The same applies to any term weighting schemes such as tf-idf
representation since we can define a; to be the product of the tf
vector and the term weighting vector (e.g., idf)), by letting a;
be the tf vector of the sentence i, we have the tf-vector of the
whole summary sentences as: ®(z) = Y .| z;a;. Introducing
A =lag,..
allows more succinct notation ®(z) = Az. Thus the first term

.y @), the (V' X m) matrix with a;’s in columns,

can be written as ||Ae — Axz||?, which is obviously convex

quadratic in x.

Furthermore, while tf vectors contain word counts in a stan-
dard tf-based treatment, for the issue of scale matching between
Ae and Az (the former usually larger than the latter due to the
budget constraint), in practice it is often more effective to use
the normalized tf vectors. In essence a tf vector is divided by the
number of whole words to represent relative frequencies instead
(i.e., the entries summed up to 1). To incorporate normalized
features, we first define a; as a normalized tf (or tf-idf) vector,
then define ®(z) = s~ —- 3", @;a;. This obviously makes
the entries in ®(x) summed up to 1. Here the denominator can
be replaced by b considering the budget constraint to be tight

T2 = b). There is no harm in this replacement since

(e, e
adding more sentences to a summary does not usually increases
the objective (cost) of the feature mismatch. Similarly, the nor-
malized tf vector for the entire document is simply the average
of a;’s, namely dividing the sum of a;’s by m. In summary, we
replace the first term in the objective of (2) by || -1 Ae —  Ax||?
where A has normalized sentence-wise features as columns.

The budget constraint is also changed to equality e "z = b.

Now, we discuss how to solve the optimization problem. Al-
though the constraints are all linear, @ is overall non-convex
due to the second entropy term which is concave in . The
objective is of the form of convex plus concave, and this type
of optimization problem is often called the convex-concave
programming. We take advantage of the iterative lineariza-
tion technique for convex-concave programming [8]]. Defining
J(@) = |4 Ac — 2 A2|[? and g(x) = A(T", x:log(a:) +
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(1 — 2;)log(1 — x;)), our convex-concave optimization can be

written as:
min f(z) —g(z) st. e z=b, 0<z<e. 3)

Note that f(z) and g(x) are both convex (but the objective is
their difference, hence non-convex), and also the constraints
are linear inequalities. The non-convexity originates from the
subtraction of g(z), and our optimization strategy is iteratively
approximating and solving the problem by linearizing g(x)

around the previous iterate. We make it formalized below.

After iteration k where we have the iterate 2:(*), we approxi-
mate (f(x) — g(z)) as a convex function. Since f(x) is already
convex, the concave —g(x) is convexified. As the best convex
approximate of a concave function is affine (linear), we define
the convexified objective as:

h(z) = f(z) = g(z™) = Vg(z®™)T(z —2®). @)

Here we used the first-order Taylor approximation for g(z)
around z(*), and the approximate objective h(x) is obviously
convex. Furthermore, h(x) is global upper bound of the original
objective (f(x) — g(x)) due to the convexity of g(z). That is,

hz) = f(z) —g(z), Va. Q)
Now, we have the convexified approximate problem:
min h(z) st. ez =b, 0<z<e, (6)

which can be solved by any off-the-shelf convex optimization
solver (e.g., the interior point method [9]). We denote the opti-
mal solution of (@) by 2(**1) . There are a couple of important
things to note. First, since 2(*) is the optimal solution for
the approximate optimization in the previous iteration, z(*) is
feasible (i.e., satisfying the inequality constraints). Secondly,
as h(z®) = f(z®) — g(2*) from (E]), h(z*)) cannot be
smaller than h(z(*+1)), the optimal value of @) Combining it
with (5), we have the following relations:

F@®) = g@®) = h(z®) > h(a*T), (7)
> f(a® ) — g(a* ). (8)

Since both z(*) and z(*+1) are feasible, implies that
we make improvement in the original objective value at every
iteration. This guarantees that the iterations eventually con-
verge to a local optimum of (3). We summarize the overall
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Algorithm 1. Document summarization via convex-concave programming

Input: A = Normalized sentence features (e.g., tf-idf) for a document, b = the number of sentences to be selected as a summary.

Output: b sentences as a summary.

Randomly choose () from the feasible set {z:eTx=0b, 0<x<e}asan initial iterate.

Repeat for k = 0,1, ... until convergence:

Solve the convex optimization:
(k)

* Y = argmin, || 2 Ae — L Az|[> = A7 log ﬁml st.elz=0>b, 0<z<e.

The final solution denoted by x°”'.

Take b sentences corresponding to the b largest m;’p"s among ¢ =1,...

, M.

convex-concave solution algorithm in Algorithm 1, where we

use [Vg(z)]; = Aog $#- fori = 1,..., m. In addition, once

the optimization is done, the final summary of b sentences is
constructed by collecting sentences corresponding to top-b scor-

ersin z;’samong i =1,...,m.

4. Empirical Evaluations

We test the proposed document summarization algorithm on
two text datasets with human summarization manually given.
The brief descriptions of the datasets are summarized below.

e State Union Dataset: This is the collection of about 200
documents from US presidents’ speeches. The vocabu-
lary size is around 23, 000, among which we randomly
select 20 documents for summarization. We manually
select the most descriptive sentences that best describe
the key themes of the documents.

* Culture Dataset: The dataset is comprised of about 700
Internet articles on historic cultures such as architectures,
celebrities, paintings, and so on. Each document is of
length about 2-3 Kbyte, and the vocabulary size is around
22,000. For each of the randomly chosen 40 documents,
the key summary sentences are selected manually.

As a performance metric, we use the Recall-Oriented Under-
study for Gisting Evaluation (ROUGE) criterion [10] that is the
most popular measure in the document summary literature. The
ROUGE basically measures how many terms are overlapped
between the retrieved summary and the human selected, and
the ROUGE-1 measure we are going to use in this section is
specifically defined as follows.

ZteS min(#(t’ X)7 #(ta S))
ZteS #(t7 S)

where S is the reference summary (i.e., the set of sentences

ROUGE-1 = )

selected by human), and X is the set retrieved by a summa-
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Table 1. ROUGE-1 scores on the state union dataset

Methods State union data Culture data

CVXCAV 0.5690 0.4966
First-b 0.1715 0.1580

Luhn58 0.4845 0.4534
Gaussian 0.4277 0.3793

rization algorithm. Also, #(¢, C') indicates the counts of the
term ¢ in the sentence set C'. Note that the denominator is the
sum of occurrences of all terms in the reference summary, and
obviously the larger ROUGE-1 score is the better.

For the above two datasets, we compare the baseline ap-
proaches (First-b, Luhn58, and Gaussian) as described
in Section[2} with our convex-concave optimization approach
(denoted by CVXCAV). The summary budget constraint b is set
to 3, and we choose empirically and fix the balancing trade-off
parameter A = 0.01. The ROUGE-1 scores are depicted in
Table|l} Our convex-concave optimization approach performs
the best for both datasets, which can be mainly attributed to our
principled formulation of the ultimate goal of faithful represen-
tation of the entire document term distribution within the given
budget constraint. Moreover, the convex-concave approximate
optimization method appears to be quite effective in finding

viable relaxed solutions.

5. Conclusion

In this paper we have proposed a novel optimization prob-
lem formulation for the unsupervised document summarization
tasks. The objective function deals with the word distribution
mismatch between the whole document and the summary, while
the entropy penalizing term encourages the strong confidence in
sentence selection. The proposed convex-concave optimization
approach is not only guaranteed to converge theoretically, but
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also performs well in practice as shown on several real-world
datasets. Extensions of the approach to the supervised learning
setup and the abstractive summarization tasks remain as future

work.
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