DOI QR코드

DOI QR Code

Beam pattern analysis for beam homogenization of conformal array sonar

곡면 배열 소나의 빔 균일화를 위한 빔 패턴 분석

  • 최정웅 (세종대학교 대학원 해양시스템융합공학과) ;
  • 홍우영 (세종대학교 대학원 해양시스템융합공학과) ;
  • 임준석 (세종대학교 전자공학과) ;
  • 이근화 (세종대학교 대학원 해양시스템융합공학과)
  • Received : 2022.07.29
  • Accepted : 2022.11.07
  • Published : 2022.11.30

Abstract

Sub-arrays of arbitrary conformal array have different geometric shape through steering direction, thus the beam patterns of sub-arrays are always non-uniform. In this paper, we apply the beam pattern synthesis method using convex optimization into the conformal array, and shows the improvement of uniformity of beam performance. The simulation is performed with the conformal array of cut-sphere shape. As a result, the standard deviation of 3 dB beamwidth in elevation is greatly reduced but the directivity index is also reduced. To alleviate this trade-off, we propose a convex optimization using a shading function.

임의의 곡면 배열에서 단위 빔 형성에 사용되는 부배열은 조향 방위마다 기하학적 형상이 다르다. 이 때문에 조향 방위 별 부배열의 빔 패턴은 항상 균일하지 않다. 본 논문에서는 볼록 최적화를 이용한 빔 형성 기법을 곡면 배열에 적용하고, 조향 방위별 빔 성능의 균일성이 향상되는 것을 보였다. 시뮬레이션은 절단 구면 형상의 곡면 배열에 대해 수행되었다. 고각 3 dB 빔 폭의 표준 편차가 크게 감소하였으나 반대급부로 지향 지수도 감소하는 것을 관찰했다. 이를 완화시키기 위한 하나의 방법으로 쉐이딩 함수를 이용한 최적화 기법을 제안한다.

Keywords

References

  1. H. Liao, G. Pundak, O. Siohan, M. Carroll, N. Coccaro, Q.-M. Jiang, T. N. Sainath, A. Senior, F. Beaufays, and M. Bacchiani, "Large vocabulary automatic speech recognition for children," Proc. Interspeech, 1611-1615 (2015).
  2. P. G. Shivakumar and P. Georgiou, "Transfer learning from adult to children for speech recognition: Evaluation, analysis and recommendations," Computer speech and language, arXiv:1805.03322 (2020).
  3. L. Rumberg, H. Ehlert, U. Ludtke, and J. Ostermann, "Age-invariant training for end-to-end child speech recognition using adversarial multi-task learning," Proc. Interspeech, 3850-3854 (2021).
  4. V. Kadyan, S. Shanawazuddin, and A. Singh, "Developing children's speech recognition system for low resource Punjabi language," Applied Acoustics, 178, 108002 (2021).
  5. R. Serizel and D. Giuliani, "Vocal tract length normalisation approaches to DNN-based children's and adults' speech recognition," Proc. IEEE SLT, 135-140 (2014).
  6. P. G. Shivakumar, A. Potamianos, S. Lee, and S. S. Narayanan, "Improving speech recognition for children using acoustic adaptation and pronunciation modeling," Proc. WOCCI, 15-19 (2014).
  7. S. S. Gray, D. Willett, J. Lu, J. Pinto, P. Maergner, and N. Bodenstab, "Child automatic speech recognition for US English: child interaction with living-roomelectronic-devices," Proc. WOCCI, 21-26 (2014).
  8. R. Duan and N. F. Chen, "Unsupervised feature adaptation using adversarial multi-task training for automatic evaluation of children's speech," Proc. Interspeech, 3037-3041 (2020).
  9. Y. Cui, M. Jia, T. Y. Lin, Y. Song, and S. Belongie, "Class-balanced loss based on effective number of samples," Proc. IEEE CVPR, 9268-9277 (2019).
  10. A. Sellami and H. Hwang, "A robust deep convolutional neural network with batch-weighted loss for heartbeat classification," Expert Systems with Applications, 122, 75-84 (2019). https://doi.org/10.1016/j.eswa.2018.12.037
  11. K. R. M. Fernando and C. P. Tsokos, "Dynamically weighted balanced loss: class imbalanced learning and confidence calibration of deep neural networks," IEEE Trans. Neural Netw. Learn. Syst. 33, 2940-2951 (2021).
  12. S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira, "Analysis of representations for domain adaptation," Proc. NIPS, 137-144 (2006).
  13. Y. Ganin and V. Lempitsky, "Unsupervised domain adaptation by backpropagation," Proc. ICML, 1180-1189 (2015).
  14. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L.Kaiser, and I. Polosukhin, "Attention is all you need," Proc. NIPS, 5998-6008 (2017).
  15. L. Dong, S. Xu, and B. Xu, "Speech-transformer: a no-recurrence sequence-to-sequence model for speech recognition," Proc. IEEE ICASSP, 5884-5888 (2018).
  16. H. Miao, G. Cheng, C. Gao, P. Zhang, and Y. Yan, "Transformer-based online CTC/attention end-to-end speech recognition architecture," Proc. IEEE ICASSP, 6084-6088 (2020).
  17. Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and V. Lempitsky, "Domain-adversarial training of neural networks," J. Mach. Learn. Res. 17, 2096-2030 (2016).
  18. S. Kullback and R. A. Leibler. "On information and sufficiency," Ann. Math. Stat. 22, 79-86 (1951). https://doi.org/10.1214/aoms/1177729694
  19. M. Chen, S. Zhao, H. Liu, and D. Cai, "Adversariallearned loss for domain adaptation," Proc. AAAI, 3521-3528 (2020).
  20. PyTorch 1.12 documentation, "https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html," (Last viewed September 16, 2022).
  21. AI Hub Free Conversation (General Men and Women) Dataset, https://www.aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=109, (Last viewed July 27, 2022).
  22. AI Hub Free Conversation (Children, Infants) Dataset, https://www.aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=108, (Last viewed July 27, 2022).
  23. S. Watanabe, T. Hori, S. Karita, T. Hayashi, J. Nishitoba, Y. Unno, N. E. Y. Soplin, J. Heymann, M. Wiesner, N. Chen, A. Renduchintala, and T. Ochiai, "ESPnet: end-to-end speech processing toolkit," arXiv: 1804.00015 (2018).
  24. T. Kudo and J. Richardson, "SentencePiece: A simple and language independent subword tokenizer and detokenizer for neural text processing," Proc. EMNLP 66-71 (2018).
  25. A. Tripathi, A. Mohan, S. Anand, and M. Singh, "Adversarial learning of raw speech features for domain invariant speech recognition," Proc. IEEE ICASSP, 5959-5963 (2018).
  26. S. Sun, C. F. Yeh, M. Y. Hwang, M. Ostendorf, and L. Xie, "Domain adversarial training for accented speech recognition," Proc. IEEE ICASSP, 4854-4858 (2018).
  27. L. Van der Maaten and G. Hinton, "Visualizing data using t-SNE," J. Mach. Learn. Res. 9, 2579-2605 (2008).