• Title/Summary/Keyword: convergence research

Search Result 13,417, Processing Time 0.043 seconds

A Study on the Strategy for Enhancing the Service Export linked with Manufacturing Sector : focused on Stage System and Special Lighting Service (제조-서비스 연계형 수출상품화 모델 개발전략 - 무대장치 및 특수조명서비스 수출산업을 중심으로 -)

  • Park, Moon-Suh
    • International Commerce and Information Review
    • /
    • v.10 no.4
    • /
    • pp.457-491
    • /
    • 2008
  • As stage equipment export markets along with special lighting service lack the attraction for already globally established businesses, such markets can be viewed as an advantageous opportunity for SMEs as in general. In reality, global businesses tend to focus on large construction projects and this indicates relatively less substantial markets such as stage equipment and special lighting service export are more suitable for SME businesses. However, possible problems may be recognized as following; doubtful capabilities by such businesses to join in the vast and competitive global market and pursue manufacturing and service based export. This point is also supported by the fact that such in general SME businesses have substantially less experience in exporting products and services abroad. Realizing the distinctive features of the Korean economy, it is unarguable that every sector and area of global market must be regarded and monitored closely. Hence, it can be argued that there is an imminent need for establishment of supportive institution to assist export process of combination of stage equipments and special lighting service. This study emphasizes the need to improve export process of stage equipments, special lighting services as well as other related products and services which have been focused in domestic market only until now. Further, it also analyzed the potential prospect of such direction reconciling current crisis our manufacturing industry is facing. Even though it maybe regarded as one of the niche market for export of Korea in the short term view, stage equipment and special lighting service industry may rapidly grow as the global cultural industries have grown along with the increase of national income earnings overall. Due to such advantageous features, it can be expected that such industries will show strong growth in the near future. After analyzing the fact that Korea's plants (eg. powerplants) export sector is at its boom, there is a need to transform stage equipment and special lighting service export market into a primary market from a secondary(niche) market for SMEs. This study is viewed from the Korean economic and export sector aspect in the aim of seeking a solution to conquest our realistic limit in our export sector by developing a suitable export model. There have been cases of very few attempts to expand abroad by SMEs who have failed miserably due to their failure to adapt to foreign culture, practice and languages as well as substantial lack in experience in export marketing. Despite this, neglecting our manufacturing industry as it is which is showing its limit and problems is out of option therefore, it is imminent that we come up with an effective measure to address this problem and service export can be suggested as one of them. This study reveals manufacturing-service export model of stage equipment and special lighting service and its related areas is recognized as a field with a very strong future and furthermore, it is expected to bring synergy effects in manufacturing and services sector as well. Further, the operation strategy contains combination, composition and fusion(convergence) of manufacturing and service sectors which could derive various of export products which displays greater success probability or this export model. The outcome of this research is expected to become a useful source for enterprises related to such industry which are seeking a possible global expansion. Furthermore, it is also expected to become a catalyst which fastens the process of global expansion and not only that, we are firmly assured that this study will become an opportunity to improve our current policies and institutions related to this area's export market.

  • PDF

Occurrence and Chemical Composition of W-Bearing Rutile from the Unsan Au Deposit (운산 금 광상에서 산출되는 함 텅스텐 금홍석의 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.2
    • /
    • pp.115-127
    • /
    • 2020
  • The Unsang gold deposit has been one of the three largest deposits (Daeyudong and Kwangyang) in Korea. The deposit consists of Au-bearing quartz veins filling fractures along fault zones in Precambrian metasedimentary rock and Jurassic Porphyritic granite, which suggests that it might be an orogenic-type. Based on its mineral assemblages and quartz textures, quartz veins are classified into 1)galena-quartz, 2)pyrrhotite-quartz, 3)pyrite-quartz, 4)pegmatic quartz, 5)muscovite-quartz, and 6)simple quartz vein types. The pyrite-quartz vein type we studied shows the following alteration features: sericitization, chloritization, and silicification. The quartz vein contains minerals including white quartz, white mica, chlorite, pyrite, rutile, calcite, monazite, zircon, and apatite. Rutile with euhedral or medium aggregate occur at mafic part from laminated quartz vein. Two types of rutile are distinguishable in BSE image, light rutile is texturally later than dark rutile. Chemical composition of rutile has 89.69~98.71 wt.% (TiO2), 0.25~7.04 wt.% (WO3), 0.30~2.56 wt.% (FeO), 0.00~1.71 wt.% (Nb2O5), 0.17~0.35 wt.% (HfO2), 0.00~0.30 wt.% (V2O3), 0.00~0.35 wt.% (Cr2O3) and 0.04~0.25 wt.% (Al2O3), and light rutile are higher WO3, Nb2O5 and FeO compared to the dark rutile. It indicates that dark rutile and light rutile were formed at different stage. The substitution mechanisms of dark rutile and light rutile are suggested as followed : dark rutile [(V3+, Cr3+) + (Nb5+, Sb5+) ↔ 2Ti4+, 4Cr3+ (or 2W6+) ↔ 3Ti4+ (W6+ ↔ 2Cr3+), V4+ ↔ Ti4+], light rutile [2Fe3+ + W6+ ↔ 3Ti4+, 3Fe2+ + W6+ ↔ Ti4+ + (V3+, Al3+, Cr3+) +Nb5+], respectively. While the dark rutile was formed by cations including V3+, V4+, Cr3+, Nb5+, Sb5+ and W6+ by regional metamorphism of hostrock, the postdating light rutile was formed by redistribution of cations from predating dark rutile and addition of Fe2+ and W6+ from Au-bearing hydrothermal fluid during ductile shear.

Occurrence and Chemical Composition of Dolomite from Komdok Pb-Zn Deposit (검덕 연-아연 광상의 돌로마이트 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.2
    • /
    • pp.107-120
    • /
    • 2021
  • The Komdok Pb-Zn deposit, which is the largest Pb-Zn deposit in Korea, is located at the Hyesan-Riwon metallogenic zone in Jiao Liao Ji belt included Paleoproterozoic Macheolryeong group. The geology of this deposit consists of Paleoproterozoic metasedimentary rocks, Jurassic Mantapsan intrusive rocks and Cenozoic basalt. The Komdok deposit which is a SEDEX type deposit occurs as layer ore and vein ore in the Paleoproterozoic metasedimentary rocks. Based on mineral petrography and paragenesis, dolomites from this deposit are classified four types (1. dolomite (D0) as hostrock, 2. early dolomite (D1) associated with tremolite, actinolite, diopside, sphalerite and galena from amphibolite facies, 3. late dolomite (D2) associated with talc, calcite, quartz, sphalerite and galena from amphibolite facies, 4. dolomite (D3) associated with white mica, chlorite, sphalerite and galena from quartz vein). The structural formulars of dolomites are determined to be Ca1.00-1.20Mg0.80-0.99Fe0.00-0.01Zn0.00-0.02(CO3)2(D0), Ca1.00-1.02M0.97-0.99Fe0.00-0.01Zn0.00-0.02(CO3)2(D1), Ca0.99-1.03Mg0.93-0.98Fe0.01-0.05Mn0.00-0.01As0.00-0.01(CO3)2(D2) and Ca0.95-1.04Mg0.59-0.68Fe0.30-0.36Mn0.00-0.01 (CO3)2(D3), respectively. It means that dolomites from Komdok deposit have higher content of trace elements (FeO, MnO, HfO2, ZnO, PbO, Sb2O5 and As2O5) compared to the theoretical composition of dolomite. These trace elements (FeO, MnO, ZnO, Sb2O5 and As2O5) show increase and decrease trend according to paragenetic sequence, but HfO2 and PbO elements no show increase and decrease trend according to paragenetic sequence. Dolomites correspond to Ferroan dolomite (D0, D1 and D2), and Ferroan dolomite and ankerite (D3), respectively. Therefore, 1) dolomite (D0) as hostrock was formed by subsequent diagenesis after sedimentation of Paleoproterozoic (2012~1700 Ma) silica-bearing dolomite in the marine evaporative environment. 2) Early dolomite (D1) was formed by hydrothermal metasomatism origined metamorphism (amphibolite facies) associated with intrusion (1890~1680 Ma) of Paleoproterozoic Riwon complex. 3) Late dolomte (D2) was formed from residual fluid by a decrease of temperature and pressure. and dolomite (D3) in quartz vein was formed by intrusion (213~181 Ma) of Jurassic Mantapsan intrusive rocks.

REE Mineralization and Geology of Chulmasan Area, Taean, Chungchungnamdo (충남 태안 철마산 일대의 지질 및 희토류 광화작용)

  • Yoo, Bong Chul
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.127-143
    • /
    • 2019
  • The geology of the Chulmasan area consists of Precambrain Sogeunri formation, granitic gneiss, foliated biotite granite, foliated mica granite, basic dyke and acidic dyke. REE mineralization in the area occurs at granitic gneiss and foliated mica granite. Minerals with minor amounts of REE and Th from granitic gneiss and foliated mica granite are zircon ($Y_2O_3$ 0.00~1.18 wt.%, $Gd_2O_3$ 0.00~0.59 wt.%, $Er_2O_3$ 0.00~0.22 wt.%, $Yb_2O_3$ 0.00~0.34 wt.%, $Lu_2O_3$ 0.00~0.48 wt.%, $ThO_2$ 0.00~0.33 wt.%), thorianite ($Nd_2O_3$ 0.00~0.24 wt.%, $Lu_2O_3$ 0.00~0.26 wt.%), berthierine ($La_2O_3$ 0.04~0.26 wt.%, $Nd_2O_3$ 0.00~0.20 wt.%, $Tb_2O_3$ 0.04~0.12 wt.%, $Dy_2O_3$ 0.17~0.26 wt.%, $Er_2O_3$ 0.33~0.44 wt.%, $Lu_2O_3$ 0.00~0.19 wt.%, $ThO_2$ 0.61~0.93 wt.%), chlorite ($La_2O_3$ 0.44~0.68 wt.%, $Ce_2O_3$ 0.12~0.13 wt.%, $Nd_2O_3$ 0.31~0.44 wt.%, $Eu_2O_3$ 0.03~0.08 wt.%, $Dy_2O_3$ 0.09~0.21 wt.%, $Ho_2O_3$ 0.04~0.14 wt.%, $Er_2O_3$ 0.18~0.32 wt.%, $Lu_2O_3$ 0.07~0.21 wt.%, $ThO_2$ 0.00~0.97 wt.%), biotite ($Nd_2O_3$ 0.02~0.08 wt.%, $Gd_2O_3$ 0.07~0.08 wt.%, $Tb_2O_3$ 0.02~0.07 wt.%, $Dy_2O_3$ 0.35~0.43 wt.%, $Ho_2O_3$ 0.15~0.26 wt.%, $Er_2O_3$ 0.24~0.28 wt.%, $Yb_2O_3$ 0.06~0.18 wt.%, $ThO_2$ 0.00~0.12 wt.%), orthoclase ($Dy_2O_3$ 0.05~0.12 wt.%, $Ho_2O_3$ 0.05~0.06 wt.%, $Er_2O_3$ 0.28 wt.%, $Yb_2O_3$ 0.06~0.12 wt.%) and plagioclase ($Ho_2O_3$ 0.01~0.03 wt.%, $Er_2O_3$ 0.10~0.27 wt.%, $ThO_2$ 0.11~0.13 wt.%). REE minerals (bastnaesite and fergusonite) were sealed fractures in mainly fledspar, mica, zircon, apatite and ilmenite. Therefore, bastnaesite and fergusonite from the Chulmasan area were formed from redissolution/reconcentration of REE-and Th-bearing minerals from granitic gneiss and foliated mica granite at late stage by several igneous activies and metamorphism.

Occurrence and Chemical Composition of Dolomite from Zhenzigou Pb-Zn Deposit, China (중국 젠지고우 연-아연 광상의 돌로마이트 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.3
    • /
    • pp.177-191
    • /
    • 2021
  • The Zhenzigou Pb-Zn deposit, one of the largest Pb-Zn deposit in the northeast of China, is located at the Qingchengzi mineral field in Jiao Liao Ji belt. The geology of this deposit consists of Archean granulite, Paleoproterozoinc migmatitic granite, Paleo-Mesoproterozoic sodic granite, Paleoproterozoic Liaohe group, Mesozoic diorite and monzoritic granite. The Zhenzigou deposit which is a strata bound SEDEX or SEDEX type deposit occurs as layer ore and vein ore in Langzishan formation and Dashiqiao formation of the Paleoproterozoic Liaohe group. Based on mineral petrography and paragenesis, dolomites from this deposit are classified three type (1. dolomite (D0) as hostrock, 2. dolomite (D1) in layer ore associated with white mica, quartz, K-feldspar, sphalerite, galena, pyrite, arsenopyrite from greenschist facies, 3. dolomite (D2) in vein ore associated with quartz, apatite and pyrite from quartz vein). The structural formulars of dolomites are determined to be Ca1.00-1.03Mg0.94-0.98Fe0.00-0.06As0.00-0.01(CO3)2(D0), Ca0.97-1.16Mg0.32-0.83Fe0.10-0.50Mn0.01-0.12Zn0.00-0.01Pb0.00-0.03As0.00-0.01(CO3)2(D1), Ca1.00-1.01Mg0.85-0.92Fe0.06-0.11 Mn0.01-0.03As0.01(CO3)2(D2), respectively. It means that dolomites from the Zhenzigou deposit have higher content of trace elements compared to the theoretical composition of dolomite. Feo and MnO contents of these dolomites (D0, D1 and D2) contain 0.05-2.06 wt.%, 0.00-0.08 wt.% (D0), 3.53-17.22 wt.%, 0.49-3.71 wt.% (D1) and 2.32-3.91 wt.%, 0.43-0.95 wt.% (D2), respectively. The dolomite (D1) from layer ore has higher content of these trace elements (FeO, MnO, ZnO and PbO) than dolomite (D0) from hostrock and dolomite (D2) from quartz vein. Dolomites correspond to Ferroan dolomite (D0 and D2), and ankerite and Ferroan dolomite (D1), respectively. Therefore, 1) dolomite (D0) from hostrock is a Ferroan dolomite formed by marine evaporative lagoon environment in Paleoproterozoic Jiao Liao Ji basin. 2) Dolomite (D1) from layer ore is a ankerite and Ferroan dolomite formed by hydrothermal metasomatism origined metamorphism (greenschist facies) associated with Paleoproterozoic intrusion. 3) Dolomte (D2) from quartz vein is a Ferroan dolomite formed by hydrothermal fluid origined Mesozoic intrusion.

Virtuous Concordance of Yin and Yang and Tai-Ji in Joseon art: Focusing on Daesoon Thought (조선 미술에 내재한 음양합덕과 태극 - 대순사상을 중심으로 -)

  • Hwang, Eui-pil
    • Journal of the Daesoon Academy of Sciences
    • /
    • v.35
    • /
    • pp.217-253
    • /
    • 2020
  • This study analyzes the principles of the 'Earthly Paradise' (仙境, the realm of immortals), 'Virtuous Concordance of Yin and Yang' (陰陽合德), and the 'Reordering Works of Heaven and Earth' (天地公事) while combining them with Joseon art. Therefore, this study aims to discover the context wherein the concept of Taiji in 'Daesoon Truth,' deeply penetrates into Joseon art. Doing so reveals how 'Daesoon Thought' is embedded in the lives and customs of the Korean people. In addition, this study follows a review of the sentiments and intellectual traditions of the Korean people based on 'Daesoon Thought' and creative works. Moreover, 'Daesoon Thought' brings all of this to the forefront in academics and art at the cosmological level. The purpose of this research is to vividly reveal the core of 'Daesoon Thought' as a visual image. Through this, the combination of 'Daesoon Thought' and Joseon art will secure both data and reality at the same time. As part of this, this study deals with the world of 'Daesoon Thought' as a cosmological Taiji principle. This concept is revealed in Joseon art, which is analyzed and examined from the viewpoint of art philosophy. First, as a way to make use of 'Daesoon Thought,' 'Daesoon Truth' was developed and directly applied to Joseon art. In this way, reflections on Korean life within 'Daesoon Thought' can be revealed. In this regard, the selection of Joseon art used in this study highlights creative works that have been deeply ingrained into people's lives. For example, as 'Daesoon Thought' appears to focus on the genre painting, folk painting, and landscape painting of the Joseon Dynasty, attention is given to verifying these cases. This study analyzes 'Daesoon Thought,' which borrows from Joseon art, from the perspective of art philosophy. Accordingly, attempts are made to find examples of the 'Virtuous Concordance of Yin and Yang' and Tai-Ji in Joseon art which became a basis by which 'Daesoon Thought' was communicated to people. In addition, appreciating 'Daesoon Thought' in Joseon art is an opportunity to vividly examine not only the Joseon art style but also the life, consciousness, and mental world of the Korean people. As part of this, Chapter 2 made several findings related to the formation of 'Daesoon Thought.' In Chapter 3, the structures of the ideas of 'Earthly Paradise' and 'Virtuous Concordance of Yin and Yang' were likewise found to have support. And 'The Reordering Works of Heaven and Earth' and Tai-Ji were found in depictions of metaphysical laws. To this end, the laws of 'The Reordering Works of Heaven and Earth' and the structure of Tai-Ji were combined. In chapter 4, we analyzed the 'Daesoon Thought' in the life and work of the Korean people at the level of the convergence of 'Daeesoon Thought' and Joseon art. The analysis of works provides a glimpse into the precise identity of 'Daesoon Thought' as observable in Joseon art, as doing so is useful for generating empirical data. For example, works such as Tai-Jido, Ssanggeum Daemu, Jusachaebujeokdo, Hwajogi Myeonghwabundo, and Gyeongdodo are objects that inspired descriptions of 'Earthly Paradise', 'Virtuous Concordance of Yin and Yang,' and 'The Reordering Works of Heaven and Earth.' As a result, Tai-Ji which appears in 'Daesoon Thought', proved the status of people in Joseon art. Given all of these statements, the Tai-Ji idea pursued by Daesoon Thought is a providence that follows change as all things are mutually created. In other words, it was derived that Tai-Ji ideology sits profoundly in the lives of the Korean people and responds mutually to the providence that converges with 'Mutual Beneficence.'

Occurrence and Chemical Composition of Ti-bearing Minerals from Samgwang Au-ag Deposit, Republic of Korea (삼광 금-은 광상에서 산출되는 함 티타늄 광물들의 산상 및 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.3
    • /
    • pp.195-214
    • /
    • 2020
  • The Samgwang Au-Ag deposit has been one of the largest deposits in Korea. The deposit consists of eight lens-shaped quartz veins which filled fractures along fault zones in Precambrian metasedimentary rock, which feature suggest that it is an orogenic-type deposit. The Ti-bearing minerals occur in wallrock (titanite, ilmenite and rutile) and laminated quartz vein (rutile). They occur minerals including biotite, muscovite, chlorite, white mica, monazite, zircon, apatite in wallrock and white mica, chlorite, arsenopyrite in laminated quartz vein. Chemical composition of titanite has maximum vaules of 3.94 wt.% (Al2O3), 0.49 wt.% (FeO), 0.52 wt.% (Nb2O5), 0.46 wt.% (Y2O3) and 0.43 wt.% (V2O5). Titanite with 0.06~0.14 (Fe/Al ratio) and 0.06~0.15 (XAl (=Al/Al+Fe3++Ti)) corresponds with metamorphic origin and low-Al variety. Chemical composition of ilmenite has maximum values of 0.07 wt.% (ZrO2), 0.12 wt.% (HfO2), 0.26 wt.% (Nb2O5), 0.04 wt.% (Sb2O5), 0.13 wt.% (Ta2O5), 2.62 wt.% (As2O5), 0.29 wt.% (V2O5), 0.12 wt.% (Al2O3) and 1.59 wt.% (ZnO). Chemical composition of rutile in wallrock and laminated quartz vein has maximum values of 0.35 wt.%, 0.65 wt.% (HfO2), 2.52 wt.%, 0.19 wt.% (WO3), 1.28 wt.%, 1.71 wt.% (Nb2O3), 0.03 wt.%, 0.07 wt.% (Sb2O3), 0.28 wt.%, 0.21 wt.% (As2O5), 0.68 wt.%, 0.70 wt.% (V2O3), 0.48 wt.%, 0.59 wt.% (Cr2O3), 0.70 wt.%, 1.90 wt.% (Al2O3) and 4.76 wt.%, 3.17 wt.% (FeO), respectively. Rutile in laminated quartz vein is higher contents (HfO2, Nb2O3, As2O5, Cr2O3, Al2O3 and FeO) and lower content (WO3) than rutile in wallrock. The substitutions of rutile in wallrock and laminated quatz vein are as followed : rutile in wallrock [(Fe3+, Al3+, Cr3+) + Hf4+ + (W5+, As5+, Nb5+) ⟵⟶ 2Ti4+ + V4+, 2Fe2+ + (Al3+, Cr3+) + Hf4+ + (W5+, As5+, Nb5+) ⟵⟶ 2Ti4+ + 2V4+], rutile in laminated quartz vein [(Fe3+, Al3+) + As5+ ⟵⟶ Ti4+ + V4+, (Fe3+, Al3+) + As5+ ⟵⟶ Ti4+ + Hf4+, 4(Fe3+, Al3+) ⟵⟶ Ti4+ + (W5+, Nb5+) + Cr3+], respectively. Based on these data, titanite, ilmenite and rutile in wallrock were formed by resolution and reconcentration of cations (W5+, Nb5+, As5+, Hf4+, V4+, Cr3+, Al3+, Fe3+, Fe2+) in minerals of wallrock during regional metamorphism. And then rutile in laminated quartz vein was formed by reconcentration of cations (Nb5+, As5+, Hf4+, Cr3+, Al3+, Fe3+, Fe2+) in alteration minerals (white mica, chlorite) and Ti-bearing minerals reaction between hydrothermal fluid originated during ductile shear and Ti-bearing minerals (titanite, ilmenite and rutile) in wallrock.