Browse > Article
http://dx.doi.org/10.22807/KJMP.2021.34.3.177

Occurrence and Chemical Composition of Dolomite from Zhenzigou Pb-Zn Deposit, China  

Yoo, Bong Chul (Convergence Research Center for Development of Mineral Resources, Korea Institute of Geoscience and Mineral Resources)
Publication Information
Korean Journal of Mineralogy and Petrology / v.34, no.3, 2021 , pp. 177-191 More about this Journal
Abstract
The Zhenzigou Pb-Zn deposit, one of the largest Pb-Zn deposit in the northeast of China, is located at the Qingchengzi mineral field in Jiao Liao Ji belt. The geology of this deposit consists of Archean granulite, Paleoproterozoinc migmatitic granite, Paleo-Mesoproterozoic sodic granite, Paleoproterozoic Liaohe group, Mesozoic diorite and monzoritic granite. The Zhenzigou deposit which is a strata bound SEDEX or SEDEX type deposit occurs as layer ore and vein ore in Langzishan formation and Dashiqiao formation of the Paleoproterozoic Liaohe group. Based on mineral petrography and paragenesis, dolomites from this deposit are classified three type (1. dolomite (D0) as hostrock, 2. dolomite (D1) in layer ore associated with white mica, quartz, K-feldspar, sphalerite, galena, pyrite, arsenopyrite from greenschist facies, 3. dolomite (D2) in vein ore associated with quartz, apatite and pyrite from quartz vein). The structural formulars of dolomites are determined to be Ca1.00-1.03Mg0.94-0.98Fe0.00-0.06As0.00-0.01(CO3)2(D0), Ca0.97-1.16Mg0.32-0.83Fe0.10-0.50Mn0.01-0.12Zn0.00-0.01Pb0.00-0.03As0.00-0.01(CO3)2(D1), Ca1.00-1.01Mg0.85-0.92Fe0.06-0.11 Mn0.01-0.03As0.01(CO3)2(D2), respectively. It means that dolomites from the Zhenzigou deposit have higher content of trace elements compared to the theoretical composition of dolomite. Feo and MnO contents of these dolomites (D0, D1 and D2) contain 0.05-2.06 wt.%, 0.00-0.08 wt.% (D0), 3.53-17.22 wt.%, 0.49-3.71 wt.% (D1) and 2.32-3.91 wt.%, 0.43-0.95 wt.% (D2), respectively. The dolomite (D1) from layer ore has higher content of these trace elements (FeO, MnO, ZnO and PbO) than dolomite (D0) from hostrock and dolomite (D2) from quartz vein. Dolomites correspond to Ferroan dolomite (D0 and D2), and ankerite and Ferroan dolomite (D1), respectively. Therefore, 1) dolomite (D0) from hostrock is a Ferroan dolomite formed by marine evaporative lagoon environment in Paleoproterozoic Jiao Liao Ji basin. 2) Dolomite (D1) from layer ore is a ankerite and Ferroan dolomite formed by hydrothermal metasomatism origined metamorphism (greenschist facies) associated with Paleoproterozoic intrusion. 3) Dolomte (D2) from quartz vein is a Ferroan dolomite formed by hydrothermal fluid origined Mesozoic intrusion.
Keywords
Zhenzigou Pb-Zn deposit; Dolomite; Occurrence; Chemical composition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ma, Y.B., Bagas, L., Xing, S.W., Zhang, S.T., Wang, R.J., Li, N., Zhang, Z.J., Zou, Y.F., Yang, X.Q., Wang, Y. and Zhang, Y., 2016, Genesis of the stratiform Zhenzigou Pb-Zn deposit in the North China Craton: Rb-Sr and C-O-S-Pb isotope constraints. Ore Geology Reviews, 79, 88-104.   DOI
2 Morrow, D.W., 1998, Regional subsurface dolomitization: Models and constraints. Geoscience Canada, 25, 57-70.
3 Rajabi, A., Rastad, E., Canet, C. and Alfonso, P., 2015, The early Cambrian Chahmir shale-hosted Zn-Pb deposit, Central Iran: An example of vent-proximal SEDEX mineralization. Mineralium Deposita, 50, 571-590.   DOI
4 Reinhold, C., 1998, Multiple episodes of dolomitization and dolomite recrystallization during shallow burial in Upper Jurassic shelf carbonates: eastern Swabian Alb, southern Germany. Sedimentary Geology, 121, 71-95.   DOI
5 Song, Y.H., Yang, F.C., Yan, G.L., Wei, M.H. and Shi, S.S., 2017, Characteristics of mineralization fluids and tracers of mineralization material sources of the Qingchengzi lead-zinc deposit in Liaoning Province. Geology and Exploration, 53, 259-269 (in Chinese with English abstract).
6 Wang, Y.C., Wang, K.Y., Zhang, S., Liang, Y.H., Li, J.F., Fu, L.J. and Wang, Z.G., 2015, Characteristics of hydrothermal superposition mineralization and fluid origins of the Xiaotongjiapuzi gold deposit in Liaoning Province, Geology and Exploration, 51, 79-87 (in Chinese with English abstract).
7 Wilkinson, J.J., Eyre, S.L. and Boyce, A.J., 2005, Ore-forming processes in Irish-Type carbonate-hosted Zn-Pb deposits: Evidence from mineralogy, chemistry, and isotopic composition of sulphides at the Lisheen mine. Economic Geology, 100, 63-86.   DOI
8 Liu, G.P., 1999, Isospatial metallogenesis in Qingchengzi ore filed, Liaoning, Geological Exploration for Non-ferrous Metals, 8, 277-282 (in Chinese with English abstract).
9 Zentmyer, R.A., Pufahl, P.K., James, N.P. and Hiatt, E.E., 2011, Dolomitization on an evaporitic Paleoproterozoic ramp: Widespread synsedimentary dolomite in the Denault Formation, Labrador Trough, Canada. Sedimentary Geology, 238, 116-131.   DOI
10 Gomez-Rivas, E., Corbella, M., Martin-Martin, J.D., Stafford, S.L., Teixell, A., Bons, P.D., Griera, A. and Cardellach, E., 2014, Reactivity of dolomitizing fluids and Mg source evaluation of fault controlled dolomitization at the Benicassim outcrop analogue (Maestrat basin, E Spain). Marine and Petroleum Geology, 55, 26-42.   DOI
11 Jiang, S.Y. and Wei, J.Y., 1989, Geochemistry of the Qingchengzi lead-zinc deposit. Mineral Deposits, 8, 20-28 (in Chinese with English abstract).
12 Li, J.A., Cai, W.Y., Wang, K.Y., Liu, H.I., Konare, Y., Qian, Y., Lee, G.J. and Yoo, B.C., 2019, Paleoproterozoic SEDEX-type stratiform mineralization overprinted by Mesozoic vein-type mineralization in the Qingchenzi Pb-Zn deposit, Northeastern China. Journal of Asian Earth Sciences, 184, 104009.   DOI
13 Li, S.Z., Zhao, G.C., Sun, M., Han, Z.Z., Luo, Y., Hao, D.F. and Xia, X.P., 2005, Deformation history of the Paleoproterozoic Liaohe assemblage in the Eastern Block of the North China Craton. Journal of Asian Earth Sciences, 24, 659-674.   DOI
14 Ma, Y.B., Xing, S.W., Zhang, Z.J., Wang, Y. and Zhang, Y., 2014, Rb-Sr isotopic age of sphalerites from Qingchengzi stratiform Pb-Zn ores and its implication for the ore forming process. Acta Geologica Sinica, 88, 996-998.   DOI
15 Yoo, B.C., 2021, Occurrence and chemical composition of dolomite from Komdok Pb-Zn deposit. Korean Journal of Mineralogy and Petrology, 34, 107-120.   DOI
16 Nagy, Z.R., Gregg, J.M., Shelton, K.L., Becker, S.P., Somerville, I.D. and Johnson, A.W., 2004, Early dolomitization and fluid migration through the Lower Carboniferous carbonate platform in the SE Irish Midlands: implications for reservoir attributes. In: The geometry and petrogenesis of dolomite hydrocarbon reservoirs, Braithwaith, C.J., Rizzi, G., Darke, G. (eds), London: Geological Society, London, Special Publications 235, 367-392.
17 Ren, Y., Zhong, D., Gao, C., Yang, Q., Xie, R., Jia, L., Jiang, Y. and Zhong, N., 2017, Dolomite geochemistry of the Cambrian Longwangmiao formation, eastern Sichuan basin: Implication for dolomitization and reservoir prediction. Petroleum Research, 2, 64-76.   DOI
18 Wilkinson, J.J., 2010, A review of fluid inclusion constraints on mineralization in the Irish ore field and implications for the genesis of sediment-hosted Zn-Pb deposits. Economic Geology, 105, 417-442.   DOI
19 Zhai M., Zhang, X.H., Zhang, Y.B., Wu, F.Y., Peng, P., Li, Q.L., Li, Z., Guo, J., Li, T.S., Zhao, L., Zhou, L.G. and Zhu, X., 2019, The geology of North Korea: An overview. Earth Science Reviews, 194, 57-96.   DOI
20 Biondi, J.C., Santos, R.V. and Cury, L.F., 2013, The Paleoproterozoic Aripuana Zn-Pb-Ag (Au, Cu) volcanogenic massive sulfide deposit, Mato Grosso, Brazil: Geology, geochemistry of alteration, carbon and oxygen isotope modeling, and implications for genesis. Economic Geology, 108, 781-811.   DOI
21 Chen, C., Lu, A., Cai, K. and Zhai, Y., 2002, Sedimentary characteristics of Mg-rich carbonate fromations and minerogenic fluids of magnesite and talc occurrences in early Proterozoic in eastern Liaoning province, China. Science in China, 45, 84-92.   DOI
22 Hendry, J.P., Gregg, J.M., Shelton, K.L., Somerville, I. and Crowley, S., 2015, Origin, characteristics and distribution of fault-related and fracture-related dolomitization: Insights from Mississippian carbonates, Isle of Man, UK. Sedimentology, 62, 717-752.   DOI
23 Wright, W.R., Somerville, I.D., Gregg, J.M., Shelton, K.L. and Johnson, A.W., 2004, Irish Lower Carboniferous replacement dolomite: Isotopic modelling evidence for a diagenetic origin involving low-temperature modified seawater. In: The geometry and petrogenesis of dolomite hydrocarbon reservoirs, Braithwaith, C.J., Rizzi, G., Darke, G. (eds), London: Geological Society, London, Special Publications, 235, 75-97.
24 Yu, G., Chen, J.F., Xue, C.J., Chen, Y.C., Chen, F.K. and Du, X.Y., 2009, Geochronological framework and Pb, Sr isotope geochemistry of the Qingchengzi Pb-Zn-Ag-Au orefield, Northeastern China. Ore Geology Reviews, 35, 367-382.   DOI
25 Zhou, L.L., Zeng, Q.D., Liu, J.M., Duan, X.X., Sun, G.T., Wang, Y.B. and Chen, P.W., 2020, Tracing mineralization history from the compositional textures of sulfide association: A case study of the Zhenzigou stratiform Zn-Pb deposit, NE China. Ore Geology Reviews, 126, 103792.   DOI
26 Bouabdellah, M., Sangster, D.F., Leach, D.L., Brown, A.C., Johnson, C. and Emsbo, P., 2012, Genesis of the Touissit-Bou Beker Mississippi Valley-Type District (Morocco-Algeria) and Its Relationship to the Africa-Europe Collision. Economic Geology, 107, 117-146.   DOI
27 Chen, J.F., Yu, G., Xue, C.J., Qian, H., He, J.F., Xing, Z. and Zhang, X., 2005, Pb isotope geochemistry of lead, zinc, gold and silver deposit clustered region, Liaodong rift zone, northeastern China. Science in China, 48, 467-476.
28 Deng, G.Q., 1983, Types and main ore controlling factors of the Liaohe group in the middle of Liaodong. Liaoning Acta Geologica Sinica, 1, 53-70 (in Chinese)
29 Duan, X.X., Zeng, Q.D., Wang, Y.B., Zhou, L.L. and Chen, B., 2017, Genesis of the Pb-Zn deposits of the Qingchengzi ore field, eastern Liaoning, China: Constraints from carbonate LA-ICPMS trace element analysis and C-O-S-Pb isotopes. Ore Geology Reviews, 89, 752-771.   DOI
30 Grandia, F., Canals, A., Cardellach, E., Banks, D.A. and Perona, J., 2003, Origin of ore-forming brines in sediment-hosted Zn-Pb deposits of the Basque-Cantabrian Basin, Northern Spain. Economic Geology, 98, 1397-1411.   DOI
31 Konari, M.B. and Rastad, E., 2018, Nature and origin of dolomitization associated with sulphide mineralization: New insights from the Tappehsorkh Zn-Pb (-Ag-Ba) deposit, Irankuh mining district, Iran. Geological Journal, 53, 1-21.   DOI
32 Johnson, A.W., Shelton, K.L., Gregg, J.M., Somerville, I.D., Wright, W.R. and Nagy, Z.R., 2009, Regional studies of dolomites and their included fluids: Recognizing multiple chemically distinct fluids during the complex diagenetic history of Lower Carboniferous (Mississippian) rocks of the Irish Zn-Pb ore field. Mineralogy and Petrology, 96, 1-18.   DOI
33 Li, D.D., Wang, Y.W., Wang, J.B., Lai, C.K., Qiu, J.Z., Wang, W, Li, S.H. and Zhang, Z.C., 2021, Iron isotopes as an ore-fluid tracer: Case study of Qingchengzi Pb-Zn-Au(-Ag) orefield in Liaoning, NE China. Resource Geology, 71, 283-295.   DOI
34 Li, Z., Chen, B. and Wei, C., 2017, Is the Paleoproterozoic Jiao-Liao-Ji belt (North China Craton) a rift?. International Journal of Earth Sciences, 106, 355-375.   DOI
35 Li, S.Z., Zhao, G.C., Santosh, M., Liu, X. and Dai, L.M., 2011, Palaeoproterozoic tectonothermal evolution and deep crustal processes in the Jiao-Liao-Ji belt, North China Craton: A review. Geological Journal, 46, 525-543.   DOI