• Title/Summary/Keyword: conventional compaction

Search Result 108, Processing Time 0.025 seconds

Analysis of Effective Improvement Depth for Establishing Quality Control Criteria of Rapid Impact Compaction for Public Fill Compaction (Public Fill 다짐 시 급속충격다짐공법의 품질관리기준 수립을 위한 유효개량심도 분석)

  • Kim, Kyu-Sun;Park, Jaeyoung;Kim, Hayoung
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.10
    • /
    • pp.5-18
    • /
    • 2023
  • The construction timeline for earthworks can be significantly reduced by substituting the conventional layer-by-layer compaction using a vibratory roller with single-layer compaction through the rapid impact compaction (RIC) method. Dynamic load compaction is well-suited for coarse-grained soils like sand. However, as the supply of sand, the primary reclamation material, becomes scarcer, the utilization of soil with fines is on the rise. To implement the dynamic load compaction, such as RIC, with reclaimed materials containing fines, it's imperative to determine the effective improvement depth. In this study, we assess the impact of the RIC method on the effective improvement depth for clean sand and public fill with fines, comparing field test results before and after RIC application. Our focus is on the cone resistance (qc) as it pertains to compaction quality control criteria. In conclusion, it becomes evident that standardizing the cone resistance is vital for the quality control of various reclaimed soils with fines. We have evaluated the compaction quality control criteria corresponding to a relative density (Dr) of 70% for clean sand as Qtn,cs = 110. As a result of this analysis, we propose new quality control criteria for qc, taking into account the fines content of reclaimed soils, which can be applied to RIC quality control.

Study on Applicability of Simultaneous Multiple Compaction Grouting Method in Soft Clay Ground (점성토 연약지반에서의 다중 동시주입 컴팩션 그라우팅 공법 적용성 연구)

  • Lee, Hyobum;Jung, Hyun-Seok;Jung, Eui-Youp;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.779-788
    • /
    • 2019
  • The compaction grouting method is one of the conventional ground improvement methods, which consolidates and compacts the surrounding ground through the injection of grout materials with low mobility. Injecting the grout into the ground can improve the soil properties, as well as form a composite of soil-grout columns. However, the conventional grout pumping is not applicable to handle multiple injection holes at the same time, which may diminish its constructability when the construction time is not enough. This paper proposes a simultaneous multiple compaction-grouting method using a new pump system developed to cover up simultaneously three injection holes at a time. Field injection tests with a single injection hole and with triangular arrangement of injection holes were conducted to evaluate the applicability of the proposed method to soft clay ground. In addition, a series of standard penetration tests (SPTs) were performed to assess the efficiency of each arrangement in improving the soft ground. It is noted from the in-situ test results that the interval distances between injection holes and the elapse time for ground stabilization are the crucial factors governing the applicability of the simultaneous multiple compaction-grouting method to improve the soft clay ground.

Laboratory Tests for the Applicability of Various Testing Devices for Measuring Degree of Compaction (여러가지 다짐 평가장비의 적용성을 위한 실내시험)

  • Yoo, Wan-Kyu;Lim, Nam-Gyu;Kim, Byoung-Il;Kim, Ju-Hyong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1178-1187
    • /
    • 2008
  • Quality assurance for embankment compaction is one of very important procedures to guarantee high quality construction. However, only sand replacement method (KS F2312) and static plate load test (KS F2310) which are conventional and tiresome methods are used to evaluate degree of compaction at construction fields. Recently, new types of devices such as the geogauge and the light falling weight deflectometer (LFWD), the soil impact hammer (CASPFOL) and dynamic cone penetration test etc. which are able to substitute for the conventional methods are begun to use to evaluate soil stiffness. In this study, a laboratory model test was performed to evaluate correlations among test results obtained from the new devices and to assess the potential use of them. All test results have correlations with relative density and water content. Especially, the coefficients of correlation between $E_G$ from the geogauge and $K_{30'}$ from the soil impact hammer and between $E_G$ from the geogauge and $E_{LFWD}$ from LFWD are more than 0.7 but those between the results from DCP and others are less than those between $E_{G{\cdot}}$ and $K_{30'}$ and $E_G$ and $E_{LFWD}$.

  • PDF

Planar Shock Wave Compaction of Oxidized Copper Nano Powders using High Speed Collision and Its Mechanical Properties (고속 충돌 시 발생하는 평면 충격파를 이용한 산화 나노 분말의 치밀화 및 기계적 특성 평가)

  • Ahn, Dong-Hyun;Kim, Wooyeol;Park, Lee Ju;Kim, Hyoung Seop
    • Journal of Powder Materials
    • /
    • v.21 no.1
    • /
    • pp.39-43
    • /
    • 2014
  • Bulk nanostructured copper was fabricated by a shock compaction method using the planar shock wave generated by a single gas gun system. Nano sized powders, average diameter of 100 nm, were compacted into the capsule and target die, which were designed to eliminate the effect of undesired shock wave, and then impacted with an aluminum alloy target at 400 m/s. Microstructure and mechanical properties of the shock compact specimen were analyzed using an optical microscope (OM), scanning electron microscope (SEM), and micro indentation. Hardness results showed low values (approximately 45~80 Hv) similar or slightly higher than those of conventional coarse grained commercial purity copper. This result indicates the poor quality of bonding between particles. Images from OM and SEM also confirmed that no strong bonding was achieved between them due to the insufficient energy and surface oxygen layer of the powders.

Effect of the Hopper of the Plug Transplanter and Moisture Content, Compaction Method, and Initial Irrigation of the Soil on the Seedling Survival rate at Transplant of Plug Seedling (플러그묘 정식시 정식기의 호퍼 크기, 토양수분, 초기관수량 및 진압방법이 작물에 미치는 영향)

  • 문성동;민영봉;박중춘
    • Journal of Bio-Environment Control
    • /
    • v.6 no.4
    • /
    • pp.258-263
    • /
    • 1997
  • The result was summarized of basic test and field test to find what quantity of irrigation, what state of compaction and what size of transplanting hopper could induce the optimum taking root in the transplantation of plug seedling by transplanters, and thus acquired the basic data for the development of the related transplanters and the optimum growth and development control. Livability of vegetables after transplanting had no significant difference with respect to for the size of hopper, but was greatly affected by the length of seedlings. The longest possible length of seedling for transplanting and optimal length were found to be 30cm and 28cm, respectively. For irrigation when transplanting red pepper or Chinese cabbage it was thought that large-sized hopper was appropriate. The livability of plug seedling 10 days after transplantation was mainly affected by soil moisture content. Consequently it was thought no irrigation would be needed when transplanting at the soil moisture content of more than 18% ; irrigation of more than 50cc would be needed at the soil moisture content of 13% : initial irrigation of more than 100cc and subsequent irrigation would be needed at the soil moisture content of less than 3.8%. The improvement of soil compaction method (left and right side compaction) with conventional semi-automatic transplanter was not necessary, since there was no difference in livability depending on the compaction methods, left-right side compaction or back-forth-left-right side compaction.

  • PDF

Prediction of Pull-Out Force of Steel Pegs Using the Relationship Between Degree of Compaction and Hardness of Soil Conditioned on Water Content (함수비에 따른 토양의 다짐도와 경도의 관계를 이용한 철항의 인발저항력 예측 연구)

  • Choi, In-Hyeok;Heo, Gi-Seok;Lee, Jin-Young;Kwak, Dong-Youp
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.23-35
    • /
    • 2023
  • The Ministry of Agriculture, Food and Rural Affairs has announced design standards for disaster-resilient greenhouses capable of resisting wind speeds with a 30-year frequency to respond to the destruction of greenhouses caused by strong winds. However, many greenhouses are still being maintained or newly installed as conventional standard facilities for the supply type. In these supply-type greenhouses, a small pile called a steel peg is used as reinforcement to resist wind-induced damage. The wind resistance of steel pegs varies depending on the soil environment and installation method. In this study, a correlation analysis was performed between the wind resistance of steel pegs installed in loam and sandy loam, using a soil hardness meter. To estimate the pull-out force of steel pegs based on soil water content and compaction, soil compaction tests and laboratory soil box and field tests were performed. The soil compaction degree was measured using a soil hardness meter that could easily confirm soil compaction. This was used to analyze the correlation between the soil compaction degree in the tests. In addition, a correlation analysis was performed between the pull-out force of steel pegs in the soil box and field. The findings of this study will be useful in predicting the pull-out force of steel pegs based on the method of steel peg installation and environmental changes.

Optimal Wavelet Filter Design Using Coding Gain (압축이득을 이용한 최적 웨이브렛 필터의 설계)

  • 이임건
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.7
    • /
    • pp.1159-1168
    • /
    • 2003
  • In this paper, a new wavelet filter design algorithm is proposed which optimizes energy compaction of transformed coefficients. The filter, designed by the proposed algorithm enhances the coding gain of the system with fixed quantizer by most unevenly distributed energy in transform domain. The coding gain function was extended to obtain the optimal filter coefficients in each stage. The experiments showed that the filter designed by proposed method outperforms conventional filters in energy compaction rate.

  • PDF

Behavior of a Reinforced Retaining Wall During Construction (보강토의 시공중 거동 평가)

  • 노한성;최영철;백종은;김영남
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.95-100
    • /
    • 2000
  • When compared with conventional retaining wall system, there are many advantages to reinforced soil such as cost effectiveness, flexibility and so on. The use of reinforced soil have been increased in the last 17 years in Korea. In this study, a full-scale reinforced soil with rigid facing were constructed to investigate the behavior of reinforcing system. The results of soil pressure and strain of reinforcement during construction are described. The influence of compaction on soil pressure and strain of reinforcement is addressed. The results show that lateral earth pressures on the wall are active state during backfill. It is obtained that the lateral soil pressure depends on the installation condition of pressure cell and construction condition. It is also observed that maximum tensile strains of reinforcement are located on 50cm to 150cm from the wall. Long-term measurement will be followed to verify the design assumptions with respect to the distribution of lateral stress in the reinforcement

  • PDF

The Study on the Physical and Mechanical Properties of Porous Concrete according to Compaction Method (다짐방법에 따른 포러스콘크리트의 물리.역학적 특성에 관한 연구)

  • Song, Jae-Lib;Park, Seung-Bum;Seo, Dae-Seuk;Lee, Jun;Jang, Young-Ill
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.813-816
    • /
    • 2006
  • Recently, improvements in the standard of living in industrial area require the establishment of a convenient residential environment in order to enhance the quality of living. To achieve such an environment, it is necessary to effectively reduce or prevent various environmental problems occurring in and around residential areas. Although conventional concrete has been regarded as a destroyer of nature, water and air can pass freely through concrete when it is made porous concrete by forming continuous void. In view of the harmony between nature and concrete, various research paths are being taken focusing on coarse aggregates to make porous concrete having continuous voids so as to improve water and air permeability, acoustic absorption, water purification, and applicability to vegetation. In this study, the Physical and Mechanical Properties of porous concrete according to compaction method analyzed by void ratio, coefficient of permeability and compressive strength.

  • PDF

Effect of Carbon Addition and Sintering Temperature on Densification and Microstructural Evolution of Sinter-Hardening Alloys Steels

  • Verma, N.;Anand, S.;Upadhyaya, A.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.557-558
    • /
    • 2006
  • In all conventional sintered PM products, the pores present are of two types, primary and secondary. Primary pores forming during compaction and latter during sintering, due to penetration of formed liquid through the matrix grain boundary. Effect of carbon addition on diffusion of Cu in SH737-2Cu system was investigated. After compaction and transient liquid phase sintering at $1120^{\circ}C$ and $1180^{\circ}C$, samples were characterized for densification, showing rise in sintering density and reduction in swelling on carbon addition. Quantitative microstructural characterization (shape factor and pore size) revealed bimodal distribution for 0% carbon, more rounded pores for 0.9% carbon and higher sintering temperature, and pore coarsening at higher sintering temperature.

  • PDF