• Title/Summary/Keyword: control of variables reasoning

Search Result 29, Processing Time 0.019 seconds

The Effects of Children's Metastrategic Activities on Strategies to Control Variables at a Scientific Reasoning Task

  • Jang, Myoung-Duk;Yang, Il-Ho;Jeong, Jin-Woo
    • Journal of the Korean earth science society
    • /
    • v.23 no.2
    • /
    • pp.154-165
    • /
    • 2002
  • The purpose of this study was to examine the effects of metastrategic exercise on a scientific reasoning strategy to control variables, and investigate the developmental patterns in the strategy usage within a given period. Two groups composed of 90 fifth grade students engaged in a scientific reasoning task over six daily sessions. Additionally, one group engaged in metastrategic exercise on fictional students' strategies of controlling variables on the task, while the other spent equivalent time on an unrelated task. Based upon results of the study, the following conclusions can be drawn. First, the metacognitive exercise on the strategy to control variables has positive and long-standing effects on the strategy performance at the reasoning task. The exercise also takes effect of near-transfer. Taking into consideration only about sixty minutes of metastrategic practice, the results provide the validity of the activity in order to develop children's reasoning strategies. Second, in a scientific reasoning task, each child seems to go through one out of two developmental patterns in their usage of reasoning strategies: gradual change or fundamental change. Considering the ratio of pattern of fundamental change between the two groups, it is clear that the metacognitive exercise influences the developmental pattern of strategy usage.

The Analysis of the Ability to Control Variables and the Types of Controlling Variables by Junior High School Students (중학생들의 변인 통제 논리력과 변인 통제 유형 분석)

  • Lee, Yoon-Ha;Kang, Soon-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.31 no.1
    • /
    • pp.32-47
    • /
    • 2011
  • The purpose of this study was to analyze the ability to control variables and the ways by which variables are controlled. First, the assessment criteria for evaluating the students' ability to control variables were developed for 8th grade students. Second, the ways variables are controlled were classified from student activity reports. These students' answers were categorized into six types (type A~ type F). Type A is defined as the group that excelled in recognizing the importance of controlling variables, eliminating unnecessary variables and identifying manipulated, dependent and controlled variables. Third, the scores of ability to control variables (CV score) and the classroom test of scientific reasoning (Lawson SRT) scores were measured. The results indicated that the CV score was highly correlated with Lawson SRT scores (r=.67, p<.01). Therefore, the assessment criteria developed in this study was used to evaluate the ability to control variables (CV score) and to measure the students' scientific reasoning.

Analysis of the Ability to Infer the Effects of Variables and Variable-Controlling Strategy in Middle School Students who experienced 'Thinking Science' Activities ('생각하는 과학' 활동을 경험한 중학생들의 변인 통제 전략과 변인의 효과를 추론하는 능력에 대한 분석)

  • Lee, Sang-Kwon;Paek, Myeong-Hwa;Ree, Jong-Baik;Choi, Byung-Soon;Park, Jong-Yoon
    • Journal of The Korean Association For Science Education
    • /
    • v.31 no.4
    • /
    • pp.587-599
    • /
    • 2011
  • The purpose of this study was to analyze variable-controlling strategy (below vcs) and the ability to infer the effect of variables in Middle school students who experienced 'Thinking Science' activities in a CASE program. For this study, 71 9th grade students experienced in CASE program for 2 years were selected as the experimental group and 72 students were selected as the control group. All students were tested with Science Reasoning TaskVII. The five types of variable-controlling strategy were extracted from students' response. According to the result of this study, the students experienced in CASE program was more successful in the variable-controlling strategy of length, quality, and shape than the control group. The types of reasoning ability of the variable effect intuitively were categorized as possibility of reasoning, impossibility of reasoning, and impossibility of reversible thinking. It has shown that the reasoning ability of the experimental group was higher than that of the control group in the length and thickness variable effect. The results of this study implied that the variable controlling activities in CASE program could be effective for learning variable controlling, and eventually, for the development of reasoning ability of the variable controlling effect. In the ability to infer the effects of variables to get difficult Intuitively, both groups were similar to the rate of cognitive level reached to the formal operation in generalization, and the student of experimental group was 1.5 times faster than the control group.

A Meta-analysis on the Logical Thinking Ability of Korean Middle-School Students - Meta-analysis of the researches between 1980 and 2000 - (우리나라 중학생들의 논리적 사고 능력에 대한 메타 분석 - 1980 ${\sim}$ 2000년까지의 학술지 게재 논문을 중심으로 -)

  • Kim, Young-Min;Kim, Soo-Hyun
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.4
    • /
    • pp.437-449
    • /
    • 2009
  • The purpose of the study is to meta-analyze research results on Korean students' logical thinking ability. The results of meta-analysis on the research studies between the year 1980 and the year 2000 show that about 40-50% of Korean middle school students have conservation reasoning, proportional reasoning and combinatorial reasoning abilities, and that about 25-30% of them have control of variables and probability reasoning abilities. In addition, only 8% of the Korean middle-school students have correlational ability. When comparing their logical thinking ability results with those of Japanese and American middle-school students, The ratio (32.6%) of Korean middle-school students who have formal thought ability is a little higher than that of American students (30.6%), but much lower than that of Japanese students (50.1%).

Design of a Fuzzy PI Controller for the Speed Control of BLDC Motor (BLDC 모터의 속도 제어를 위한 퍼지 PI 제어기 설계)

  • Song, Seung-Joon;Kim, Yong;Lee, Seung-Il;Lee, Eun-Young;Kim, Pill-Soo;Cho, Kyu-Man
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1147-1150
    • /
    • 2001
  • This paper represents a realization of a fuzzy PI control method for a speed control of BLDC motor. In other words, the gains of the PI controller is tuned by a fuzzy logic controller. Simplified reasoning methods are used for fuzzy reasoning. Fuzzy logic speed controller is designed by using the high performance of DSPchip(TMS320F240). By experiment, it is confirmed that the speed of BLDC motor well follows an command speed in the load variables or speed variables.

  • PDF

Integrated Procedure of Self-Organizing Map Neural Network and Case-Based Reasoning for Multivariate Process Control (자기조직화 지도 신경망과 사례기반추론을 이용한 다변량 공정관리)

  • 강부식
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.1
    • /
    • pp.53-69
    • /
    • 2003
  • Many process variables in modem manufacturing processes have influence on quality of products with complicated relationships. Therefore, it is necessary to control multiple quality variables in order to monitor abnormal signals in the processes. This study proposes an integrated procedure of self-organizing map (SOM) neural network and case-based reasoning (CBR) for multivariate process control. SOM generates patterns of quality variables. The patterns are compared with the reference patterns in order to decide whether their states are normal or abnormal using the goodness-of-fitness test. For validation, it generates artificial datasets consisting of six patterns, normal and abnormal patterns. Experimental results show that the abnormal patterns can be detected effectively. This study also shows that the CBR procedure enables to keep Type 2 error at very low level and reduce Type 1 error gradually, and then the proposed method can be a solution fur multivariate process control.

  • PDF

Fuzzy Neural Controller with Additive Hybrid Operators

  • Hayashi, Yoichi;Keller, James M.;Chen, Zhihong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1118-1120
    • /
    • 1993
  • Fuzzy logic places a considerable burden on an inference engine for applications such as control or approximate reasoning. Various neural network architectures have been proposed to deal with the computational task, and yet, maintain flexibility in the desired traits of the final system. Recently, we introduced a trainable network architecture whose nodes implement weighted Yager additive hybrid operators for fuzzy logic inference in an approximate reasoning setting. In this paper we examine the utility of such networks for control situations. We show that they are capable of learning control functions which are piece-wise monotonic in each of the variables. The learning ability is demonstrated through an example.

  • PDF

Iterative Tuning of PID Controller by Fuzzy Indirect Reasoning and a Modified Zigler-Nichols Method (퍼지 간접추론법과 수정형 지글러-니콜스법에 의한 비례-적분-미분 제어기의 점진적 동조)

  • Kim, S.D.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.5
    • /
    • pp.74-83
    • /
    • 1996
  • An iterative tuning technique is derived for PID controllers which are widely used in industries. The tuning algorithm is based upon a fuzzy indirect reasoning method and an iterative technique. The PID gains for the first tuning action are determined by a method which is modified from the Ziegler-Nichols step response method. The first PID gains are determined to obtain a control performance so close to a design performance that the following tuning process can be made effectively. The design paramaters are given as time-domain variables which human is familiar with. The results of simulation studies show that the proposed tuning method can produce an effective tuning for arbitrary design performances.

  • PDF

The Development of a Learning Program for Enhancing the Skills of Control Variables and the Effects of Its Applications (변인 통제 능력을 강화하기 위한 수업 프로그램의 개발 및 적용 효과 분석)

  • Lee, Yoon-Ha;Kang, Soon-Hee
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.519-528
    • /
    • 2011
  • The main purpose of this study was to develop a teaching program, especially designed to improve the skills of control variables. The secondary purpose was to investigate the effect of the program on enhancing students' scientific reasoning and understanding. The program was designed based on the 3-step learning model: i.e. students recognize the necessity of controlling the variables (step 1), perform their own experiments (step 2), and reflect on their variables control process (step 3). The program included 9 topics of increasing difficulty. In results, Lawson's SRT scores increased in both experimental and control groups after application of the program, but the difference was not statistically significant. After the application, there was an increase in type A and type B which implied that students' skills of control variables was improved. In addition, responses of students in the experimental group to the open-ended items showed that it was challenging for them to think scientifically and critically when controling variables, but they ended up feeling proud of their achievement after the program.

Fault Diagnostic System Based on Fuzzy Time Cognitive Map

  • Lee, Kee-Sang;Kim, Sung-Ho
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.62-68
    • /
    • 1999
  • FCM(Fuzzy Cognitive Map) is proposed for representing causal reasoning. Its structure allows systematic causal reasoning through a forward inference. Authors have already proposed a diagnostic system based on FCM to utilized to identify the true origin of fault by on-line pattern diagnosis. In FCM based fault diagnosis, Temporal Associative Memories (TAM) recall of FCM is utilized to identify the true origin of fault by on-line pattern match where predicted pattern sequences obtained from TAM recall of fault FCM models are compared with actually observed ones. In engineering processes, the propagation delays are induced by the dynamics of processes and may vary with variables involved. However, disregarding such propagation delays in FCM-based fault diagnosis may lead to erroneous diagnostic results. To solve the problem, a concept of FTCM(Fuzzy Time Cognitive Map) is introduced into FCM-based fault diagnosis in this work. Expecially, translation method of FTCM makes it possible to diagnose the fault for some discrete time. Simulation studies through two-tank system is carried out to verify the effectiveness of the proposed diagnostic scheme.

  • PDF