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Abstract

Fuzzy logic places a considerable burden on an
inference engine for applications such as control or
approximate reasoning. Various neural network
architectures have been proposed to deal with the
computational task, and yet, maintain flexibility in the
desired traits of the final system. Recently, we introduced
a trainable network architecture whose nodes implement
weighted Yager additive hybrid operators for fuzzy logic
inference in an approximate reasoning setting. In this
paper we examine the utility of such networks for control
situations. We show that they are capable of learning
control functions which are piece-wise monotonic in each
of the variables. The learning ability is demonstrated

through an example.

Introduction

Fuzzy logic and neural networks have gained
considerable attention in recent years as mechanisms to
solve control problems [1-6]. Both technologies, and
combinations of the two, have been shown to deal
effectively with nonlinear situations, especially in those
cases where the underlying model is only known
heuristically, or through a collection of training data.
Recently, we have introduced a new class of fuzzy neural
networks, based on additive hybrid fuzzy set theoretic
connectives for pattern recognition, general multicriteria
decision-making, and fuzzy logic inference[7-11]. The
networks are trainable and the individual nodes can be
linguistically interpreted as "mini-rules" after training [9].
Also, unimportant features can be detected during training
[10]. The purpose of this paper is to demonstrate how
these networks can be applied to control problems.
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Weighted Yager Additive Hybrid Operator Networks
for Control

Fuzzy set theoretic connectives, i.e., unions,
intersections, generalized means, and hybrid operators,
are useful for aggregating memberships functions. The
resulting membership depends on the type of aggregation
connective used, and this type is dictated by the kind of
attitude that we expect from the aggregation connective.
These connectives are very useful in decision analysis and
making. The reader is referred to [7,12] for a more
complete description of such fuzzy set connectives.

In the hybrid type of connective, the high input
values are allowed to compensate for the low ones. The
additive 7y operators are defined as weighted arithmetic
mean of union and intersection operators respectively:

ASyB=(1-)(ANB)+Y(AUB).

It is clear that this operator can act as a pure
intersection or union at the extremes: Y = 0 and 1
respectively. But it allows the intersection and union to
compensate for each other when 0 <y < 1. Thus ycan be
regarded as the parameter that controls the degree of
compensation. There are many different forms of both the
additive and a corresponding multiplicative hybrid
connective which are useful in automated decision
analysis[7,12].

In order to match more closely the way in which a
traditional neural network handles inputs and weights,

exponential weights were incorporated into the new
operators. Here, the output value had the form

y=(0-Yyl1+vy2, where

y1=1-min (1, f1(x;%, p)}, with

m
f1xid, p)= [ 2, (1-xi®HP 11/, p & [0,00);
i=1
and

y2=min {1, 2%, p)},  with

m
£2(xi%%, p) = [ 2, (xiSHP 11/P, p & [0,00).

1=
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The union part (y2) is just a saturated p-norm of the
exponentially weighted inputs, and the intersection is
obtained through DeMorgan's Law. In this case, the

m
constraint 2 8i=m (which ensures that the union part is
i=1

always greater than the intersection part in the
multiplicative y-model) is no longer needed. All that is
required is that each weight is greater than or equal to
zero, and that at least one 8; 20, [7]. The xj € [0,1] are
the inputs or criteria to be aggregated, d; represents the
weight associated with the input xj and is related to the
importance of that input, and y e [0,1] controls the degree
of compensation between the union and intersection parts
of the operator.

Since each node computes a value which is a
differentiable function of its inputs, this network can be
trained using any neural network training technique, such
as backpropagation. To demonstrate the use of weighted
Yager additive hybrid networks to control, we applied the
network shown in Figure 1 to the data found in [3]. These
data were generated from the equation y = ( 1.0 + x(l)'s +

21 + x31'5 )"‘ and random noise x4. Because these
operators are monotonic non-decreasing functions of their
inputs (or monotonic non-increasing functions of the
complements of the inputs), it is necessary to determine,
from the training data, regions where the output is
increasing and decreasing with respect to each input
variable. Then, over those regions, the input variable or
its complement is used for the network. The data, both
inputs and outputs, were scaled into the open interval
(0,1) for use in this network. The first six columns of
Table 1 represent the training data ("Y" represents the
target; "y" corresponds to the output of the network after
training). The last six columns display the testing data.

As can be seen, the expected values ("Y") and the
generated values ("y") are in close agreement. The
network converged with a mean squared error of 0.0002
on the 20 training samples. We note that in [3], both the
training data and the testing data were used to determine
the appropriate number of training iterations to prevent
over learning of their network. Another noteworthy
advantage of this approach is that unimportant features
can be detected during training [10]. In this case, the
weight for the input x4 stabilized at 0.003, with y = 0.484

for that node. Since the node in question is more
intersection than union, very small weights signify
unimportance cf the feature for the training data, i.e., even
a very low membership value does not contribute much to
the calculation of the intersection.

Conclusions

In this paper, we demonstrated how networks of
weighted Yager additive hybrid operators could be used
for control. The advantages of this approach are that the
networks are trainable, the operators possess useful
theoretical properties, unimportant features can be
detected during training, and after training, individual
nodes can be interpreted in a linguistic fashion as "mini-
rules”.
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Figure 1. Additive Hybrid Network for Fuzzy Control Example.
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Table 1. Training and Testing Results for Additive Hybrid Network

Training Data and Results Testing Data and Results

X{ 5 ;(; X4 Y y X] ;E ;5 Xy4 Y y
160 [.520 [.840 [.160 }.370 ].356 [l.160 |.840 ].200 |.160 ].318 [.329
160 |.200 ].680 |.160 1.217 [.230 J.160 |.520 |.360 |.160 [.201 }.209
160 1.840 |[.520 [.800 ].340 ].388 |.160 |.200 |.520 |.800 {.191 ].194
.160 1.520 ].360 }.800 ]|.201 ].204 H.160 |.840 [.680 {.800 ].375 |.374
160 1.200 ].200 }.160 }.175 |.173 }1.160 |.520 [.840 |[.160 ].370 ].361
.800 [.840 |.360 ].160 }.634 ].625 [1.800 [.200 [.680 [.160 J.479 ].494
.800 |.520 [.520 [.800 J.472 ].470 J1.800 |.840 {.520 |.800 ].654 |].660
.800 1.200 |.680 |.800 J.479 ].487 J.800 }.520 [.360 |[.800 [.455 |.449
.800 |.840 [.840 ].160 |.914 1.863 |{.800 |.200 [.200 |.160 |[.414 }.422
.800 1.520 [.680 |.160 {.513 }.531 [1.800 |[.840 |.360 |.160 ].634 ].630
160 1.200 [.520 [.800 {.191 [.190 Ji.160 |.520 |.520 |.800 [.213 ].222
.160 [.840 1.360 {.800 [.326 }.326 |l.160 [.200 [.680 [.800 [.217 ].235
.160 1.520 [.200 |.160 |.196 J.202 Jl.160 |.840 {.840 |.160 [.533 ].422
160 |.200 [.360 ].160 J.180 [J.175 |l.160 |.520 |.640 |.160 |.241 |].247
160 [.840 [.520 1.800 |.340 ].388 {.160 {.200 [.520 |.800 [.191 {.194
.800 |.520 [.680 |.800 J.513 J.513 J1.800 |.840 }.360 |.800 ].634 {.630
.800 [.200 [.840 [.160 [.656 ].640 ||.800 [.520 {.200 [.160 {.446 ].438
.800 |.840 |.680 (.160 }.702 |.721 |.800 |.200 |.360 |.160 [.423 ].422
.800 [.520 |.520 ].800 J.472 ].470 [.800 |.840 |[.520 |.800 [.654 }].660
.800 1.200 {.360 ].800 ].423 |.422 }.800 |.520 |.680 [.800 [.513 ].537
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