• 제목/요약/키워드: control chart

검색결과 702건 처리시간 0.03초

A Statistical Control Chart for Process with Correlated Subgroups

  • Lee, Kwang-Ho
    • Communications for Statistical Applications and Methods
    • /
    • 제5권2호
    • /
    • pp.373-381
    • /
    • 1998
  • In this paper a new control chart which accounts for correlation between process subgroups will be proposed. We consider the case where the process fluctuations are autocorrelated by a stationary AR(1) time series and where n($\geq1$) items are sampled from the process at each sampling time. A simulation study is presented and shows that for correlated subgroups, the proposed control chart makes a significant improvement over the traditionally employed X-bar chart which ignores subgroup correlations. Finally, we illustrate the proposed chart by comparing the standardized residuals and X-bar chart on a data set of motor shaft diameters.

  • PDF

비정규분포공정에서 매디안특수관리도의 모형설계와 적용연구 (Median Control Chart for Nonnormally Distributed Processes)

  • 신용백
    • 기술사
    • /
    • 제20권3호
    • /
    • pp.15-25
    • /
    • 1987
  • Statistical control charts are useful tools to monitor and control the manufacturing processes and are widely used in most Korean industries. Many Korean companies, however, do not always obtain desired results from the traditional control charts by Shewhart such as the X-chart, X-chart, X-chart, etc. This is partly because the quality charterstics of the process are not distributed normally but are skewed due to the intermittent production, small lot size, etc. In Shewhart X-chart, which is the most widely used one in Korea, such skewed distributions make the plots to be inclined below or above the central line or outside the control limits although no assignable causes can be found. To overcome such shortcomings in nonnormally distributed processes, a distribution-free type of confidence interval can be used, which should be based on order statistics. This thesis is concerned with the design of control chart based on a sample median which is easy to use in practical situation and therefore properties for nonnormal distributions may be easily analyzed. Control limits and central lines are given for tile more famous nonnormal distributions, such as Gamma, Beta, Lognormal, Weibull, Pareto, Truncated-normal distributions. Robustness of the proposed median control chart is compared with that of the X-chart, the former tends to be superior to the latter as the probability distribution of the process becomes more skewed. The average run length to detect the assignable cause is also compared when the process has a Normal or a Gamma distribution for which the properties of X are easy to verify, the proposed chart is slightly worse than the X-chart for the normally distributed product but much better for Gamma-distributed products. Average Run Lengths of the other distributions are also computed. To use the proposed control chart, the probability distribution of the process should be known or estimated. If it is not possible, the results of comparison of the robustness force us to use the proposed median control chart based on a normal distribution. To estimate the distribution of the process, Sturge's formula is used to graph the histogram and the method of probability plotting, $X^2$-goodness of fit test and Kolmogorov-Smirnov test, are discussed with real case examples. A comparison of the propose4 median chart and the X chart was also performed with these examples and the median chart turned out to be superior to the X-chart.

  • PDF

비정규분포공정에서 메디안특수관리도 통용모형설정에 관한 실증적 연구(요약) (Median Control Chart for Nonnormally Distributed Processes)

  • 신용백
    • 산업경영시스템학회지
    • /
    • 제10권16호
    • /
    • pp.101-106
    • /
    • 1987
  • Statistical control charts are useful tools to monitor and control the manufacturing processes and are widely used in most Korean industries. Many Korean companies, however, do not always obtain desired results from the traditional control charts by Shewhart such as the $\bar{X}$-chart, $\bar{X}$-chart, $\bar{X}$-chart, etc. This is partly because the quality charterstics of the process are not distributed normally but are skewed due to the intermittent production, small lot size, etc. In Shewhart $\bar{X}$-chart. which is the most widely used one in Kora, such skewed distributions make the plots to be inclined below or above the central line or outside the control limits although no assignable causes can be found. To overcome such shortcomings in nonnormally distributed processes, a distribution-free type of confidence interval can be used, which should be based on order statistics. This thesis is concerned with the design of control chart based on a sample median which is easy to use in practical situation and therefore properties for nonnormal distributions may be easily analyzed. Control limits and central lines are given for the more famous nonnormal distributions, such as Gamma, Beta, Lognormal, Weibull, Pareto, Truncated-normal distributions. Robustness of the proposed median control chart is compared with that of the $\bar{X}$-chart; the former tends to be superior to the latter as the probability distribution of the process becomes more skewed. The average run length to detect the assignable cause is also compared when the process has a Normal or a Gamma distribution for which the properties of X are easy to verify, the proposed chart is slightly worse than the $\bar{X}$-chart for the normally distributed product but much better for Gamma-distributed products. Average Run Lengths of the other distributions are also computed. To use the proposed control chart, the probability distribution of the process should be known or estimated. If it is not possible, the results of comparison of the robustness force us to use the proposed median control chart based oh a normal distribution. To estimate the distribution of the process, Sturge's formula is used to graph the histogram and the method of probability plotting, $\chi$$^2$-goodness of fit test and Kolmogorov-Smirnov test, are discussed with real case examples. A comparison of the proposed median chart and the $\bar{X}$ chart was also performed with these examples and the median chart turned out to be superior to the $\bar{X}$-chart.

  • PDF

A Note on the Median Control Chart

  • Park, Hyo-Il
    • Communications for Statistical Applications and Methods
    • /
    • 제20권2호
    • /
    • pp.107-113
    • /
    • 2013
  • This study reviews several well-known control charts for the location parameter with a discussion of the relationship between the maintenance of the control chart and a series of hypotheses testing. As a by-product, we then propose a new median control chart with the sign test statistic. We also modify the nonparametric control charts to easily understand the relation. Then we illustrate the construction of several median control charts with the industrial data and compare the efficiency among several control charts. Finally, we discuss some interesting features for the median control charts as concluding remarks.

경제적 손실을 고려한 기대손실 관리도의 설계 (Design of Expected Loss Control Chart Considering Economic Loss)

  • 김동혁;정영배
    • 산업경영시스템학회지
    • /
    • 제36권2호
    • /
    • pp.56-62
    • /
    • 2013
  • Control chart is representative tool of Statistical Process Control (SPC). But, it is not given information about the economic loss that occurs when a product is produced characteristic value does not match the target value of the process. In order to manage the process, we should consider not only stability of the variation also produce products with a high degree of matching the target value that is most ideal quality characteristics. There is a need for process control in consideration of economic loss. In this paper, we design a new control chart using the quadratic loss function of Taguchi. And we demonstrate effectiveness of new control chart by compare its ARL with ${\overline{x}}-R$ control chart.

Estimation of Change Point in Process State on CUSUM ($\bar{x}$, s) Control Chart

  • Takemoto, Yasuhiko;Arizono, Ikuo
    • Industrial Engineering and Management Systems
    • /
    • 제8권3호
    • /
    • pp.139-147
    • /
    • 2009
  • Control charts are used to distinguish between chance and assignable causes in the variability of quality characteristics. When a control chart signals that an assignable cause is present, process engineers must initiate a search for the assignable cause of the process disturbance. Identifying the time of a process change could lead to simplifying the search for the assignable cause and less process down time, as well as help to reduce the probability of incorrectly identifying the assignable cause. The change point estimation by likelihood theory and the built-in change point estimation in a control chart have been discussed until now. In this article, we discuss two kinds of process change point estimation when the CUSUM ($\bar{x}$, s) control chart for monitoring process mean and variance simultaneously is operated. Throughout some numerical experiments about the performance of the change point estimation, the change point estimation techniques in the CUSUM ($\bar{x}$, s) control chart are considered.

관리도 선정 및 해석을 위한 전문가시스템 개발 (An Expert System Development for Control Chart Selection and Interpretation)

  • 유춘번;이태규
    • 산업경영시스템학회지
    • /
    • 제21권45호
    • /
    • pp.265-277
    • /
    • 1998
  • The control chart has been used widely and importantly as a tool for statistical process control(SPC). Most companies are concerned with improving the quality and the productivity as well as reducing the cost, especially in today's highly competitive environment. Though SPC is known as a technique for consistent quality, it is not used properly due to lack of knowledge about it. It is required to develop a support system for control chart selection and interpretation that can be utilized by non-specialist without hard training or experiences. The support system was developed by applying the expert system tool to popular control charts. Though some researches on this area has been performed, the implemented results expose many problems in field applications due to the unsatisfactory explanation of the selected control chart and limited knowledge base for resolving the problems. This thesis presented an expert system for control chart as solution for these problems. The expert system for the control chart selection and interpretation is developed by using Turbo C and EXSYS which is an expert system development tool.

  • PDF

비정규분포공정(非正規分布工程)에서 특수관리도(特殊管理圖)의 적용연구(適用硏究) (A Study on the Special Purpose Control Chart for Non-normal Distribution)

  • 신용백;황의철
    • 품질경영학회지
    • /
    • 제14권1호
    • /
    • pp.11-18
    • /
    • 1986
  • Whereas in non-symmetrical distribution manufacturing process they are not plotted relatively on the centeral line but plotted on the skew of right-hand side or left-hand side. That is to say, for the prupose of producing either upper-specification-oriented items or lower-specification-oriented items, and when we carry out tighter control so as to have them pass only its specifications, the distribution shape naturally has a non-normal distribution. In these cases, we could use either compressed control limits or variable transformed logarithm control charts. It the above mentioned methods were not available, we should use special purpose control chart-Mode control chart or Gram-Charlier control chart. These are proper methods for manufacturing process control which uses control chart method. In spite of these methods, domestic manufacturing and mining companies are utterly ignorant about these methods. That invites practical problems in their companies. To enhance this improvements, I proved the property of practical applications of control chart method by comparing and analyzing the case studies of practical application of speical purpose control chart method, and also by introducing the application methods.

  • PDF

Demerit-EWMA Control Charts

  • 조교영;전영목
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2004년도 춘계학술대회
    • /
    • pp.7-14
    • /
    • 2004
  • In this paper, we present an effective method for process control using the Demerit-EWMA control chart in the process where nonconforming units or nonconformities are occurred by various types. We compare performance of Demerit control chart, Demerit-CUSUM control chart and Demerit-EWMA control chart based on the average run length.

  • PDF

A Study of Demerit-EWMA Control Charts

  • Cho, Gyo-Young;Jeon, Young-Mok
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권2호
    • /
    • pp.431-439
    • /
    • 2004
  • In this paper, we present an effective method for process control using the Demerit-EWMA control chart in the process where nonconforming units or nonconformities are occurred by various types. We compare performance of Demerit control chart, Demerit-CUSUM control chart and Demerit-EWMA control chart based on the average run length(ARL).

  • PDF