• Title/Summary/Keyword: contraction Principle

Search Result 80, Processing Time 0.017 seconds

FRACTIONAL NONLOCAL INTEGRODIFFERENTIAL EQUATIONS AND ITS OPTIMAL CONTROL IN BANACH SPACES

  • Wang, Jinrong;Wei, W.;Yang, Y.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.2
    • /
    • pp.79-91
    • /
    • 2010
  • In this paper, a class of fractional integrodifferential equations of mixed type with nonlocal conditions is considered. First, using contraction mapping principle and Krasnoselskii's fixed point theorem via Gronwall's inequailty, the existence and uniqueness of mild solution are given. Second, the existence of optimal pairs of systems governed by fractional integrodifferential equations of mixed type with nonlocal conditions is also presented.

EXISTENCE AND CONTROLLABILITY OF FRACTIONAL NEUTRAL INTEGRO-DIFFERENTIAL SYSTEMS WITH STATE-DEPENDENT DELAY IN BANACH SPACES

  • KAILASAVALLI, SUBRAMANIAN;SUGANYA, SELVARAJ;ARJUNAN, MANI MALLIKA
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.1
    • /
    • pp.51-82
    • /
    • 2016
  • In view of ideas for semigroups, fractional calculus, resolvent operator and Banach contraction principle, this manuscript is generally included with existence and controllability (EaC) results for fractional neutral integro-differential systems (FNIDS) with state-dependent delay (SDD) in Banach spaces. Finally, an examples are also provided to illustrate the theoretical results.

SEMI-COMPATIBILITY AND FIXED POINT THEOREM IN MENGER SPACE USING IMPLICIT RELATION

  • Singh, Bijendra;Jain, Shishir
    • East Asian mathematical journal
    • /
    • v.21 no.1
    • /
    • pp.65-76
    • /
    • 2005
  • In this paper the concept of semi-compatibility has been introduced in Menger space and it has been applied to prove results on existence of unique common fixed point of four self maps satisfying an implicit relation. It results in a generalization of Banach contraction principle established by Sehgal and Bharucha-Reid in [8] All the result presented in this paper are new.

  • PDF

THREE-POINT BOUNDARY VALUE PROBLEMS FOR A COUPLED SYSTEM OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Yang, Wengui
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.773-785
    • /
    • 2012
  • In this paper, we establish sufficient conditions for the existence and uniqueness of solutions to a general class of three-point boundary value problems for a coupled system of nonlinear fractional differential equations. The differential operator is taken in the Caputo fractional derivatives. By using Green's function, we transform the derivative systems into equivalent integral systems. The existence is based on Schauder fixed point theorem and contraction mapping principle. Finally, some examples are given to show the applicability of our results.

WEIGHTED PSEUDO ALMOST PERIODIC SOLUTIONS OF HOPFIELD ARTIFICIAL NEURAL NETWORKS WITH LEAKAGE DELAY TERMS

  • Lee, Hyun Mork
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.221-234
    • /
    • 2021
  • We introduce high-order Hopfield neural networks with Leakage delays. Furthermore, we study the uniqueness and existence of Hopfield artificial neural networks having the weighted pseudo almost periodic forcing terms on finite delay. Our analysis is based on the differential inequality techniques and the Banach contraction mapping principle.

STEPANOV ALMOST PERIODIC SOLUTIONS OF CLIFFORD-VALUED NEURAL NETWORKS

  • Lee, Hyun Mork
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.39-52
    • /
    • 2022
  • We introduce Clifford-valued neural networks with leakage delays. Furthermore, we study the uniqueness and existence of Clifford-valued Hopfield artificial neural networks having the Stepanov weighted pseudo almost periodic forcing terms on leakage delay terms. However the noncommutativity of the Clifford numbers' multiplication made our investigation diffcult, so our results are obtained by decomposing Clifford-valued neural networks into real-valued neural networks. Our analysis is based on the differential inequality techniques and the Banach contraction mapping principle.

REMARKS ON THE EXISTENCE OF AN INERTIAL MANIFOLD

  • Kwak, Minkyu;Sun, Xiuxiu
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.5
    • /
    • pp.1261-1277
    • /
    • 2021
  • An inertial manifold is often constructed as a graph of a function from low Fourier modes to high ones and one used to consider backward bounded (in time) solutions for that purpose. We here show that the proof of the uniqueness of such solutions is crucial in the existence theory of inertial manifolds. Avoiding contraction principle, we mainly apply the Arzela-Ascoli theorem and Laplace transform to prove their existence and uniqueness respectively. A non-self adjoint example is included, which is related to a differential system arising after Kwak transform for Navier-Stokes equations.

ON IMPULSIVE SYMMETRIC Ψ-CAPUTO FRACTIONAL VOLTERRA-FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS

  • Fawzi Muttar Ismaael
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.3
    • /
    • pp.851-863
    • /
    • 2023
  • We study the appropriate conditions for the findings of uniqueness and existence for a group of boundary value problems for impulsive Ψ-Caputo fractional nonlinear Volterra-Fredholm integro-differential equations (V-FIDEs) with symmetric boundary non-instantaneous conditions in this paper. The findings are based on the fixed point theorem of Krasnoselskii and the Banach contraction principle. Finally, the application is provided to validate our primary findings.