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ABSTRACT. In this paper, a class of fractional integrodifferential equations of mixed type with
nonlocal conditions is considered. First, using contraction mapping principle and Krasnosel-
skii’s fixed point theorem via Gronwall’s inequailty, the existence and uniqueness of mild so-
lution are given. Second, the existence of optimal pairs of systems governed by fractional
integrodifferential equations of mixed type with nonlocal conditions is also presented.

1. INTRODUCTION

The fractional differential equations has recently been proved to be valuable tools in the
modeling of many phenomena in various fields of engineering, physics, economy and science.
We can find numerous applications in viscoelasticity, electrochemistry, control, porous media,
electromagnetic, etc. [11, 13, 14, 15, 24, 25]. In recent years, there has been a significant
development in fractional differential equations. One can see the monographs of Kilbas et al.
[18], Miller and Ross [23], Podlubny [28], Lakshmikantham et al. [20], and the papers on
abstract fractional differential equations [7, 8, 9, 10, 12, 17, 21, 22, 26, 27] and the references
therein. On the other hand, the study of initial value problems with nonlocal conditions arises to
deal specially with some situations in physics. For the comments and motivations of nonlocal
Cauchy problem in different fields, we refer the reader to [1, 6] and the references contained
therein.

Very recently, the fractional differential equations with nonlocal conditions on infinite di-
mensional spaces attracted some authors such as Benchohra, Mophou, N’Guérékata, Sakthivel

Received by the editors December 16 2009; Accepted June 2 2010.
2000 Mathematics Subject Classification. 34K05, 34A12, 34A40, 93C25.
Key words and phrases. Fractional integrodifferential equations of mixed type, nonlocal conditions, Krasnosel-

skii’s fixed point theorem, existence, optimal control.
† Corresponding author.
JinRong Wang acknowledge support from the National Natural Science Foundation of Guizhou Province (2010,

No.2142) and Introducing Talents Foundation for the Doctor of Guizhou University (2009, No.031). W. Wei ac-
knowledge support from the National Natural Science Foundation of China (No.10961009). YanLong Yang ac-
knowledge support from the Youth Teachers Natural Science Foundation of Guizhou University (2009, No.083).

79



80 JINRONG WANG, W. WEI, AND Y. YANG

and etc. However, to our knowledge, the fractional integrodifferential equations of mixed type
with nonlocal initial conditions and its optimal control on infinite dimensional Banach spaces
are not studied extensively. Motivated by the works [27, 29], the main purpose of this paper
is to consider the following more general fractional nonlocal integrodifferential equations of
mixed type and its optimal control

Dqx(t) = Ax(t) + tnf (t, x(t), (Kx)(t), (Hx)(t)) , t ∈ J, n ∈ Z+, q ∈ (0, 1), (1.1)

x(0) = g(x) + x0 (1.2)

where J = [0, T ] in a general Banach space (X, ‖ ·‖), where the operator A is the infinitesimal
generator of a C0-semigroup {T (t) , t ≥ 0} on X , x0 ∈ X , f : J × X × X × X → X
is a nonlinear function, and g : C(J,X) → X constitutes a nonlocal Cauchy problem. The
derivative Dq is understood here in the Riemann-Liouville sense. Operators K and H are
nonlinear integral operators given by

(Kx)(t) =
∫ t

0
k(t, s, x(s))ds, (Hx)(t) =

∫ T

0
h(t, s, x(s))ds.

The rest of this paper is organized as follows. In Section 2, we give some preliminaries
and introduce the mild solution of system (1.1)-(1.2). In Section 3, we study the existence
and uniqueness of mild solutions for system (1.1)-(1.2) using Banach contraction principle and
Krasnoselskii’s fixed point theorem visa Gronwall’s inequality. At last, we introduce a class of
admissible controls and an existence result of optimal controls for a Lagrange problem (P) is
proved.

2. PRELIMINARIES

Let Lb(X) be the Banach space of all linear and bounded operators on X . C(J,X) be the
Banach space of all X-valued continuous functions from J into X endowed with the norm
‖x‖C = supt∈J ‖x(t)‖.

Let us recall the following known definitions. For more details see [28].

Definition 2.1. A real function f(t) is said to be in the space Cα, α ∈ R if there exists a real
number κ > α, such that f(t) = tκg(t), where g ∈ C[0,∞) and it is said to be in the space
Cm

α iff f (m) ∈ Cα, m ∈ N .

Definition 2.2. The Riemann-Liouville fractional integral operator of order γ ≥ 0 of a function
f ∈ Cα, α ≥ −1 is defined as

Iγf(t) =
1

Γ(γ)

∫ t

0
(t− s)γ−1f(s)ds

where Γ(·) is the Euler gamma function.

Definition 2.3. If the function f ∈ Cm
−1, m ∈ N , the fractional derivative of order γ > 0 of a

function f(t) is in the Caputo sense is given by

dγf(t)
dtγ

=
1

Γ(m− γ)

∫ t

0
(t− s)m−γ−1fm(s)ds, m− 1 < γ ≤ m.
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Now, we can introduce the mild solution of system (1.1)-(1.2).

Definition 2.4. A mild solution of system (1.1)-(1.2) to be a function in C(J,X) such that

x(t) = T (t)(x0 + g(x)) +
1

Γ(q)

∫ t

0
(t− s)q−1snT (t− s)f (s, x(s), (Kx)(s), (Hx)(s)) ds.

3. MAIN RESULTS

In this section, we give the existence and uniqueness of the mild solutions for system (1.1)-
(1.2).

We need the following assumptions.
[HA]: A is the infinitesimal generator of a strongly continuous semigroup {T (t) , t ≥ 0} on

X with domain D(A).
[Hf]: f : J × X × X × X → X is continuous and there exists a function m1,m2,m3 ∈

L1
Loc(J,R+) such that

‖f(t, x1, x2, x3)− f(t, y1, y2, y3)‖ ≤ m1(t)‖x1 − y1‖+ m2(t)‖x2 − y2‖+ m3(t)‖x3 − y3‖
for all xi, yi ∈ X , i = 1, 2, 3 and t ∈ J .

[Hk]: Let Dk = {(t, s) ∈ R2; 0 ≤ s ≤ t ≤ T}. The function k : Dk × X → X is
continuous and there exists a mk(t, s) ∈ C(Dk, R

+) and

K∗ = sup
t∈J

∫ t

0
mk(t, s)ds < ∞

such that
‖k(t, s, x)− k(t, s, y)‖ ≤ mk(t, s)‖x− y‖

for each (t, s) ∈ Dk and x, y ∈ X .
[Hh]: Let Dh = {(t, s) ∈ R2; 0 ≤ s, t ≤ T}. The function h : Dh ×X → X is continuous

and there exists a mh(t, s) ∈ C(Dh, R+) and

H∗ = sup
t∈J

∫ T

0
mh(t, s)ds < ∞

such that
‖h(t, s, x)− h(t, s, y)‖ ≤ mh(t, s)‖x− y‖

for each (t, s) ∈ Dh and x, y ∈ X .
[Hg]: g : C(J,X) → X is a continuous and there exists a constant lg > 0 such that

‖g(x)− g(y)‖ ≤ lg‖x− y‖C ,

for arbitrary x, y ∈ C(J,X), where ‖ · ‖C denotes ‖ · ‖C(J,X).

[HΩn]: The function Ωn : J → R+, n ∈ Z+, defined by

Ωn = M

[
lg +

tnT q

(n + 1)Γ(q)
(‖m1‖L1

Loc(J,R+) + K∗‖m2‖L1
Loc(J,R+) + H∗‖m3‖L1

Loc(J,R+)

)]
,

satisfies 0 < Ωn ≤ ω < 1, for all t ∈ J .
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Now we are ready to give our first result which is based on the Banach contraction mapping
principle.

Theorem 3.1. Assume that the conditions [HA], [Hf], [Hk], [Hh], [Hg] and [HΩn] are satis-
fied. Then system (1.1)-(1.2) has a unique mild solution.

Proof. We consider the operator Γ : C(J,X) → C(J,X) defined by

(Γx)(t) = T (t)[x0 + g(x)]

+
1

Γ(q)

∫ t

0
(t− s)q−1snT (t− s)f (s, x(s), (Kx)(s), (Hx)(s)) ds, (3.1)

for all t ∈ J . Note that Γ is well defined on C(J,X).
Now, take t ∈ J and x, y ∈ C(J,X). Then we have

‖Γx(t)− Γy(t)‖ ≤ ‖T (t)(g(x)− g(y))‖

+
1

Γ(q)

∥∥∥∥
∫ t

0
(t− s)q−1snT (t− s)[f(s, x(s), (Kx)(t), (Hx)(t))

−f(s, y(s), (Ky)(t), (Hy)(t))]ds

∥∥∥∥.

Hence, we get

‖Γx(t)− Γy(t)‖
≤ M‖g(x)− g(y)‖

+M
T q−1

Γ(q)

∫ t

0
sn‖f(s, x(s), (Kx)(t), (Hx)(t))− f(s, y(s), (Ky)(t), (Hy)(t))‖ds,

where M = supt∈J{‖T (t)‖Lb(X)} and Lb(X) be the Banach space of all linear and bounded
operators on X .

According to [Hf] and [Hg], we obtain

‖Γx(t)− Γy(t)‖

≤ Mlg‖x− y‖C + M
T q−1

Γ(q)

∫ t

0
snm1(s)‖x(s))− y(s)‖ds

+M
T q−1

Γ(q)

∫ t

0
snm2(s)‖(Kx)(s))− (Ky)(s)‖ds

+M
T q−1

Γ(q)

∫ t

0
snm3(s)‖(Hx)(s))− (Hy)(s)‖ds

≤ Mlg‖x− y‖C + M
T q−1

Γ(q)
‖x− y‖C

∫ t

0
sn[m1(s) + K∗m2(s) + H∗m3(s)]ds.

Therefore, we can deduce that

‖Γx(t)− Γy(t)‖ ≤ Ωn(t)‖x− y‖C .
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Thus, we obtain
‖Γx− Γy‖C ≤ Ωn(t)‖x− y‖C .

Hence, assumption [HΩn] allows us to conclude in view of the contraction mapping principle,
that Γ has a unique fixed point x ∈ C(J,X), and

x(t) = T (t)[x0 + g(x)] +
1

Γ(q)

∫ t

0
(t− s)q−1snT (t− s)f(s, x(s), (Kx)(s), (Hx)(s))ds

which is the unique mild solution of system (1.1)-(1.2). ¤
Our second result uses the following Krasnoselskii fixed point theorem.

Theorem 3.2. Let B be a closed convex and nonempty subsets of Banach space X . Let L and
N be two operators such that

(1) Lx +Ny ∈ B whenever x, y ∈ B;
(2) L is a contraction mapping;
(3) N is compact and continuous.

Then there exists z ∈ B such that z = Lz +N z.

Suppose that
[Hf′]: f : J ×X ×X ×X → X , for a.e. t ∈ J , the function f(t, ·, ·, ·) : X ×X ×X → X

is continuous and for all x, y, z ∈ X , the function f(·, x, y, z) : J → X is measurable. There
exists a function ρ ∈ L1

Loc(J,R+) such that

‖f(t, x, y, z)‖ ≤ ρ(t)

for all x, y, z ∈ X and t ∈ J .
[Hk′]: Let Dk = {(t, s) ∈ J × J ; 0 ≤ s ≤ t ≤ T}. The function k : Dk × X → X is

continuous and there exists a mk(t, s) ∈ C(Dk, R
+) such that

‖k(t, s, x)‖ ≤ mk(t, s)

for each (t, s) ∈ Dk and x ∈ X .
[Hh′]: Let Dh = {(t, s) ∈ J × J ; 0 ≤ s ≤ t ≤ T}. The function h : Dh × X → X is

continuous and there exists a mh(t, s) ∈ C(Dk, R
+) such that

‖h(t, s, x)‖ ≤ mh(t, s)

for each (t, s) ∈ Dh and x ∈ X .
Now we are ready to state and prove the following existence result.

Theorem 3.3. Assume that the conditions [HA],[Hf′], [Hk′], [Hh′], [Hg] are satisfied. Then
system (1.1)-(1.2) has at least one mild solution on J provided that

Mlg < 1.

Proof. Let us choose

r = M(‖x0‖+ G) + M
Tn+q

(n + 1)Γ(q)
‖ρ‖L1

Loc(J,R+) + Mc0 + c2
Tn+q

n + 1
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with
G = sup

x∈C(J,X)
{‖g(x)‖}, (3.2)

c0 and c2 defined respectively by (3.3) and (3.4) below.
Consider the ball

Br = {x ∈ C(J,X) | ‖x‖ ≤ r}.
Define on Br the operators Γ1 and Γ2 by

(Γ1x)(t) = T (t)[x0 + g(x)],

and

(Γ2x)(t) =
1

Γ(q)

∫ t

0
(t− s)q−1snT (t− s)f(s, x(s), (Kx)(s), (Hx)(s))ds.

Step1. Let us observe that if x, y ∈ Br then Γ1x + Γ2y ∈ Br.
In fact,

‖(Γ1x)(t) + (Γ2y)(t)‖

≤ M‖x0 + g(x)‖+
1

Γ(q)

∫ t

0
(t− s)q−1sn‖f(s, y(s), (Ky)(s), (Hy)(s))‖ds

≤ M(‖x0‖+ ‖g(x)‖) + M
T q−1

Γ(q)

∫ t

0
sn‖f(s, y(s), (Ky)(s), (Hy)(s))‖ds,

which according to (3.2), gives

‖(Γ1x)(t) + (Γ2y)(t)‖ ≤ M(‖x0‖+ G) + M
Tn+q

(n + 1)Γ(q)
‖ρ‖L1

Loc(J,R+) ≤ r.

Hence, we can deduce that
‖Γ1x + Γ2x‖C ≤ r.

Step 2. We show that Γ1 is a contraction mapping.
For any t ∈ J , x, y ∈ C(J,X) we have

‖(Γ1x)(t)− (Γ1y)(t)‖ ≤ M‖g(x)− g(y)‖
which in view of [Hg], gives

‖(Γ1x)(t)− (Γ1y)(t)‖ ≤ Mlg‖x− y‖C ,

which implies that
‖Γ1x− Γ1y‖ ≤ Mlg‖x− y‖C .

Since Mlg < 1, then Γ1 is a contraction mapping.
Step 3. Let us prove that Γ2 is continuous and compact.
For this purpose, we assume that xn → x in C(J,X). It comes from the continuity of k and

h that

k(t, s, xn(s)) → k(t, s, x(s)) and ‖k(t, s, xn(s))− k(t, s, x(s))‖ ≤ 2K∗,

h(t, s, xn(s)) → h(t, s, x(s)) and ‖h(t, s, xn(s))− h(t, s, x(s))‖ ≤ 2H∗.
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By the dominated convergence theorem,
∫ t

0
h(t, s, xn(s))ds →

∫ t

0
h(t, s, x(s))ds,

∫ T

0
k(t, s, xn(s))ds →

∫ T

0
k(t, s, x(s))ds,

as n →∞. Then by [Hf′], we have

f(s, xn(s), (Kxn)(s), (Hxn)(s)) → f(s, x(s), (Kx)(s), (Hx)(s)) as n →∞, s ∈ J.

‖f(s, xn(s), (Kxn)(s), (Hxn)(s))‖ ≤ ρ(s), s ∈ J.

By the dominated convergence theorem again, we have

‖(Γ2xn)(t)− (Γ2x)(t)‖

≤ MTn+q

(n + 1)Γ(q)

∫ t

0
‖f(s, xn(s), (Kxn)(s), (Hxn)(s))− f(s, x(s), (Kx)(s), (Hx)(s))‖ds

→ 0, as n →∞,

which implies that Γ2 is continuous.
To prove that Γ2 is a compact operator, we observe that Γ2 is a composition of two operators,

that is, Γ2 = U ◦ V where

(V x)(s) = T (t− s)f(s, x(s), (Kx)(s), (Hx)(s)), t ∈ J , 0 < s < t,

and

(Uy)(t) =
∫ t

0
(t− s)q−1sny(s)ds, t ∈ J.

Since for the same reason as Γ2, the operator V is also continuous, it suffices to prove that
V is uniformly bounded and U is compact to prove that Γ2 is compact.

Let x ∈ Br. Then (Kx)(t) ∈ B
′
r = {v ∈ C | ‖v‖C ≤ K∗} and (Hx)(t) ∈ B

′′
r = {v ∈ C |

‖v‖C ≤ H∗}. In view of [Hf′], f is bounded on the compact set J×Br×B
′
r×B

′′
r . Therefore,

we set
c0 = sup

(t,x,y,z)∈J×B
′
r×B

′′
r

‖f(t, x(t), y(t), z(t))‖ < ∞. (3.3)

Then, using (3.3), we get

‖(V x)(s)‖ ≤ ‖T (t− s)‖‖f(s, x(s), (Kx)(s), (Hx)(s))‖ ≤ Mc0 ≤ r,

from which we deduce that ‖V x‖C ≤ r. This means that V is uniformly bounded on Br.
Since y ∈ C(J,X), we set

c2 = sup
t∈J

‖y(t)‖ < ∞. (3.4)

Then, on the other hand, we have

‖(Uy)(t)‖ =
∥∥∥∥

∫ t

0
(t− s)q−1sny(s)ds

∥∥∥∥ ≤ c2

∫ t

0
(t− s)q−1snds ≤ c2

Tn+q

n + 1
≤ r
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and on the other hand, for 0 < s < t2 < t1 < T ,

‖(Uy)(t1)− (Uy)(t2)‖

=
∥∥∥∥

∫ t1

0
(t1 − s)q−1sny(s)ds−

∫ t2

0
(t2 − s)q−1sny(s)ds

∥∥∥∥

≤
∥∥∥∥

∫ t2

0
[(t1 − s)q−1 − (t2 − s)q−1]sny(s)ds

∥∥∥∥ +
∥∥∥∥

∫ t2

t1

(t1 − s)q−1sny(s)ds

∥∥∥∥

≤
∫ t2

0
|(t1 − s)q−1 − (t2 − s)q−1|sn‖y(s)‖ds +

∫ t2

t1

(t1 − s)q−1sn‖y(s)‖ds

≤ c2T
n

q
|2(t1 − t2)q + tq2 − tq1|

≤ 2
c2T

n

q
|t1 − t2|q,

which does not depend on y. So UBr is relatively compact. By the Arzela-Ascoli Theorem,
U is compact. In short, we have proven that Γ2 is continuous and compact, Γ1 is a contraction
mapping and Γ1x + Γ2y ∈ Br if x, y ∈ Br. Hence, the Krasnoselskii theorem allows us to
conclude that system (1.1)-(1.2) has at least one mild solution on J . ¤
Corollary 3.4. In addition to the assumptions of Theorem 3.3, assumptions [Hf], [Hk], [Hh]
also hold. Then system (1.1)-(1.2) has a unique mild solution on J .

Proof. To prove the uniqueness of x(t), let y(t) be another mild solution of system (1.1)-(1.2)
with nonlocal condition y0 + g(y). It comes from

‖x(t)− y(t)‖ ≤ M‖x0 − y0‖+ Mlg‖g(x)− g(y)‖

+M
Tn+q+1

(n + 1)Γ(q)

∫ t

0
(m1(t) + m2(t)K∗ + m3(t)H∗)‖x(s)− y(s)‖ds

that

‖x(t)− y(t)‖
≤ M

1−Mlg
‖x0 − y0‖

+MT
Tn+q

(n + 1)Γ(q)(1−Mlg)

∫ t

0
(m1(t) + m2(t)K∗ + m3(t)H∗)‖x(s)− y(s)‖ds

≤ M

1−Mlg
‖x0 − y0‖+ MT

Tn+q

(n + 1)Γ(q)(1−Mlg)
M̂

∫ t

0
‖x(s)− y(s)‖ds,

which implies by Gronwall’s inequality

‖x(t)− y(t)‖ ≤ M̃
M

1−Mlg
‖x0 − y0‖

which yield the uniqueness of x(·). ¤
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4. EXISTENCE OF OPTIMAL CONTROLS

We suppose that Y is another separable reflexive Banach space from which the controls u
take the value. We denote a class of nonempty closed and convex subsets of Y by Wf (Y ). The
multifunction ω : J −→ Wf (Y ) is measurable and ω(·) ⊂ E where E is bounded set of Y ,
the admissible control set Uad = Sp

ω = {u ∈ Lp(E) | u(t) ∈ ω(t) a.e.}, 1 < p < ∞. Then
Uad 6= ∅ (see P142 Proposition 1.7 and P174 Lemma 3.2 of [16]).

Consider the following controlled system




Dqx(t) = Ax(t) + tnf(t, x(t), (Kx)(t), (Hx)(t)) + C(t)u(t),
t ∈ J , u ∈ Uad, n ∈ Z+, q ∈ (0, 1),

x(0) = g(x) + x0.
(4.1)

Assumption [HC]: C ∈ L∞(J ; L(Y , X)).
It is easy to see that Cu ∈ Lp(J ; X) for all u ∈ Uad.
By Theorem 3.3, we have the following result.

Theorem 4.1. In addition to assumptions of Theorem 3.3, suppose assumption [HC] holds.
For every u ∈ Uad, system (4.1) has a mild solution corresponding to u given by the solution
of the following integral equation

xu(t) = T (t)[x0 + g(x)] +
1

Γ(q)

∫ t

0
(t− s)q−1snT (t− s)f(s, x(s), (Kx)(s), (Hx)(s))ds

+
1

Γ(q)

∫ t

0
(t− s)q−1snT (t− s)C(s)u(s)ds

Proof. Compared with Theorem 3.3, the key step is to check the term containing control policy.
Consider

ξ(t) =
1

Γ(q)

∫ t

0
(t− s)q−1snT (t− s)C(s)u(s)ds,

using Hölder inequality, we have

‖ξ(t)‖ ≤ M
T q−1

Γ(q)

∫ t

0
sn‖C(s)u(s)‖ds

≤ M‖C‖∞ Tn+q

(n + 1)Γ(q)

∫ t

0
‖u(s)‖Y ds

≤ M‖C‖∞ Tn+q

(n + 1)Γ(q)

(∫ t

0
1

p−1
p ds

) p−1
p

( ∫ t

0
‖u(s)‖p

Y ds

) 1
p

≤ M‖C‖∞ Tn+q

(n + 1)Γ(q)
‖u‖Lp(J,Y ),

where ‖C‖∞ is the norm of operator C in Banach space L∞(J, L(Y, X)). It is easy to see that
‖T (t− ·)C(·)u(·)‖ is integrable. Hence ξ(·) ∈ C(J,X). Using Theorem 3.3, one can verify it
immediately. ¤
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Assumption [HL]:
[HL1] The functional l : J ×X × Y −→ R ∪ {∞} is Borel measurable.
[HL2] l(t, ·, ·) is sequentially lower semicontinuous on X × Y for almost all t ∈ J .
[HL3] l(t, x, ·) is convex on Y for each x ∈ X and almost all t ∈ J .
[HL4] There exist constants d ≥ 0, e > 0, ϕ is nonnegative and ϕ ∈ L1(J ; R) such that

l(t, x, u) ≥ ϕ(t) + d‖x‖+ e‖u‖p
Y .

We consider the Lagrange problem (P):
Find (x0, u0) ∈ C(J,X)× Uad such that

J(x0, u0) ≤ J(xu, u), for all u ∈ Uad,

where

J(xu, u) =
∫ T

0
l(t, xu(t), u(t))dt,

and xu(·, x∗) denotes the mild solution of system (4.1) corresponding to the control u ∈ Uad.
In order to obtain the existence of optimal controls we need the following important lemma.

Lemma 4.2. (See Lemma 4.1 of [19]) Suppose that A is the infinitesimal generator of a com-
pact semigroup {T (t) , t ≥ 0} in X . Then the operator Q : Lp(J ;Y ) −→ C(J ;X) with
p > 1, given by

(Qf)(·) =
∫ ·

0
T (· − s)f(s)ds

is strongly continuous.

Now we can give another main result of this paper, the existence of optimal controls for
problem (P).

Theorem 4.3. Suppose X is a separable reflexive Banach space and A is the infinitesimal
generator of a compact semigroup {T (t) , t ≥ 0} in X . If the assumption [HL] and the
assumptions of Theorem 4.1 holds, then the problem (P) admits at least one optimal pair.

Proof. If inf{J(xu, u) | u ∈ Uad} = +∞, there is nothing to prove.
Assume that inf{J(xu, u) | u ∈ Uad} = m < +∞. Using assumption [HL], we have m >

−∞. By definition of infimum there exists a minimizing sequence feasible pair {(xn, un)} ⊂
Aad ≡ {(x, u) | x is a mild solution of system (4.1) corresponding to u ∈ Uad}, such that
J(xn, un) −→ m as n −→ +∞. Since {un} ⊆ Uad, {un} is bounded in Lp(J ;Y ), there
exists a subsequence, relabeled as {un}, and u0 ∈ Lp(J ;Y ) such that

un w−→ u0 in Lp(J ; Y ).

Then, since Uad is closed and convex, thanks to Marzur Lemma, u0 ∈ Uad.
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Suppose xn is the mild solution of system (4.1) corresponding to un (n = 0, 1, 2, · · · ), xn

satisfies the following integral equation

xn(t) = T (t)[x0 + g(xn)]

+
1

Γ(q)

∫ t

0
(t− s)q−1snT (t− s)f(s, xn(s), (Kxn)(s), (Hxn)(s))ds

+
1

Γ(q)

∫ t

0
(t− s)q−1snT (t− s)C(s)un(s)ds

Let fn(θ) ≡ f(θ, xn(θ), (Kxn)(θ), (Hxn)(θ)), by assumption [Hf′], we obtain that fn

is a bounded continuous operator from in J into X , hence fn(·) ∈ Lp(J ; X). Further-
more, {fn(·)} ⊆ X , {fn(·)} is bounded in Lp(J ; X), there exists a subsequence, relabeled
as {fn(·)}, and f̂(·) ∈ Lp(J ; X) such that

fn(·) w−→ f̂(·) in Lp(J ; X)

By Lemma 4.2, we have

Qfn
s−→ Qf̂ in C(J ; X)

We consider the following system
{

Dqx(t) = Ax(t) + tnf̂(t) + C(t)u0(t), t ∈ J , u ∈ Uad, n ∈ Z+,
x(0) = g(x) + x0.

(4.2)

By Theorem 4.1, we know that system (4.2) has a mild solution

x̂(t) = T (t)[x0 + g(x̂)] +
1

Γ(q)

∫ t

0
(t− s)q−1snT (t− s)f̂ (s) ds

+
1

Γ(q)

∫ t

0
(t− s)q−1snT (t− s)C(s)u0(s)ds.

Define

ηn(t) =
∥∥∥∥

1
Γ(q)

∫ t

0
(t− s)q−1snT (t− s)

[(
fn(s)− f̂(s)

)
+ C(s)

(
un(s)− u0(s)

)]
ds

∥∥∥∥ ,

then

ηn(t) ≤ Tn+q

(n + 1)Γ(q)

∫ t

0

∥∥∥T (t− s)
[(

fn(s)− f̂(s)
)

+ C(s)
(
un(s)− u0(s)

)]∥∥∥ ds.

Using Lemma 4.2 again, we have

ηn −→ 0 in C(J ; R) as n −→∞.
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It comes from

‖xn(t)− x̂(t)‖
≤ ‖T (t)[g(xn)− g(x̂)]‖

+
∥∥∥∥

1
Γ(q)

∫ t

0
(t− s)q−1snT (t− s)

[(
fn(s)− f̂(s)

)
+ C(s)

(
un(s)− u0(s)

)]
ds

∥∥∥∥
≤ Mlg‖xn − x̂‖C + ηn

and Mlg < 1, one has

0 ≤ (1−Mlg)‖xn − x̂‖C ≤ ηn.

Then we obtain
xn −→ x̂ in C(J ;X) as n −→∞.

Furthermore, using assumptions [Hf′], [Hk′] and [Hh′], we also obtain

fn(·) → f(·, x̂(·), (Kx̂)(·), (Hx̂)(·)) in C(J ;X) as n −→∞.

Using the uniqueness of limit, we have

f̂(t) = f(t, x̂, (Kx̂)(t), (Hx̂)(t)).

Thus, x̂ can be given by

x̂(t) = T (t)[x0 + g(x̂)] +
1

Γ(q)

∫ t

0
(t− s)q−1snT (t− s)f(s, x̂, (Kx̂)(s), (Hx̂)(s))ds

+
1

Γ(q)

∫ t

0
(t− s)q−1snT (t− s)C(s)u0(s)ds,

is which just a mild solution of system (4.1) corresponding to u0.
Since C(J ; X) ↪→ L1(J ;X), using the assumption [HL] and Balder’s theorem, we can

obtain

m = lim
n→∞

∫ T

0
l (t, xn(t), un(t)) dt ≥

∫ T

0
l
(
t, x̂(t), u0(t)

)
dt = J

(
x̂, u0

) ≥ m.

This show that J attains its minimum at u0 ∈ Uad. ¤

REFERENCES

[1] L. Byszewski; Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal
Cauchy problem, J. Math. Anal. Appl., 162(1991), 494-505.

[2] L. Byszewski; Existence, uniqueness and asymptotic stability of solutions of abstract nonlocal Cauchy prob-
lems, Dynam. Systems Appl., 5(1996), 595-605.

[3] L. Byszewski and H. Akca; Existence of solutions of a semilinear functional differential evolution nonlocal
problem, Nonlinear Anal., 34(1998), 65-72.

[4] L. Byszewski and H. Akca; On a mild solution of a semilinear functional-differential evolution nonlocal
problem, J. Appl. Math. Stochastic Anal., 10(1997), 265-271.

[5] K. Balachandran and M. Chandrasekaran; The nonlocal Cauchy problem for semilinear integrodifferential
equation with devating argument, Proceedings of the Edinburgh Mathematical Society, 44(2001), 63-70.



FRACTIONAL NONLOCAL INTEGRODIFFERENTIAL EQUATIONS AND OPTIMAL CONTROL 91

[6] K. Balachandran and R. R. Kumar; Existence of solutions of integrodifferential evoluition equations with time
varying delays, Applied Mathematics E-Notes, 7(2007), 1-8.

[7] K. Balachandran, J. Y. Park; Nonlocal Cauchy problem for abstract fractional semilinear evolution equations,
Nonlinear Anal. 71(2009), 4471-4475.

[8] M. Benchohra, J. Henderson, S. K. Ntouyas, A. Ouahab; Existence results for fractional order functional
differential equations with infinite delay, J. Math. Anal. Appl., 338(2008), 1340-1350.

[9] M. Benchohra, J. Henderson, S. K. Ntouyas, A. Ouahab; Existence results for fractional functional differential
inclusions with infinite delay and application to control theory, Fract. Calc. Appl. Anal., 11(2008), 35-56.

[10] Yong-Kui Chang, V. Kavitha, M. Mallika Arjunan; Existence and uniqueness of mild solutions to a semilinear
integrodifferential equation of fractional order, Nonlinear Anal., 71(2009), 5551-5559.

[11] Diethelm, A. D. Freed; On the solution of nonlinear fractional order differential equations used in the modeling
of viscoelasticity, in: F. Keil, W. Mackens, H. Voss, J. Werther (Eds.), Scientific Computing in Chemical
Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, Springer-
Verlag, Heidelberg, 1999, pp. 217-224.

[12] M. M. El-Borai; Semigroup and some nonlinear fractional differential equations, Applied Mathematics and
Computation, 149(2004), 823-831.

[13] L. Gaul, P. Klein, S. Kempfle; Damping description involving fractional operators, Mech. Syst. Signal Pro-
cess., 5(1991), 81-88.

[14] W. G. Glockle, T. F. Nonnenmacher; A fractional calculus approach of self-similar protein dynamics, Biophys.
J., 68(1995), 46-53.

[15] R. Hilfer; Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
[16] S. Hu and N. S. Papageorgiou, Handbook of multivalued Analysis (Theory), Kluwer Academic Publishers,

Dordrecht Boston, London, 1997.
[17] Lanying Hu, Yong Ren and R. Sakthivel, Existence and uniqueness of mild solutions for semilinear integro-

differential equations of fractional order with nonlocal initial conditions and delays, Semigroup Forum, (in
press).

[18] A. A. Kilbas, Hari M. Srivastava, J. Juan Trujillo; Theory and Applications of Fractional Differential Equa-
tions, in: North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V, Amsterdam, 2006.

[19] X. Li and J. Yong, Optimal control theory for infinite dimensional systems, Birkhauser Boston, 1995.
[20] V. Lakshmikantham, S. Leela and J. Vasundhara Devi; Theory of Fractional Dynamic Systems, Cambridge

Scientific Publishers, 2009.
[21] V. Lakshmikantham; Theory of fractional differential equations, Nonlinear Anal., 60(2008), 3337-3343.
[22] V. Lakshmikantham, A. S. Vatsala; Basic theory of fractional differential equations, Nonlinear Anal.,

69(2008), 2677-2682.
[23] K. S. Miller, B. Ross; An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New

York, 1993.
[24] F. Mainardi, Fractional calculus; Some basic problems in continuum and statistical mechanics, in: A. Carpin-

teri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, Wien,
1997, pp. 291-348.

[25] F. Metzler, W. Schick, H. G. Kilian, T. F. Nonnenmache; Relaxation in filled polymers: A fractional calculus
approach, J. Chem. Phys., 103(1995), 7180-7186.
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