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REGULARITY OF SOLUTIONS OF

ABSTRACT QUASILINEAR DELAY

INTEGRODIFFERENTIAL EQUATIONS

Dong Gun Park, Krishnan Balachandran, and Francis Paul Samuel

Abstract. We prove the existence and uniqueness of classical solutions
for a quasilinear delay integrodifferential equation in Banach spaces. The
result is established by using the semigroup theory and the Banach fixed

point theorem.

1. Introduction

Abstract quasilinear integrodifferential equations arise in many areas of sci-
ence such as population dynamics, mathematical physics, heat conduction the-
ory of material with memory etc. For this reason, this type of equations have
received much attention in recent years. The literature related to quasilinear
differential and integrodifferential equations is very extensive. A general theory
of quasilinear evolution equations has been developed by Kato [14, 15]. Using
the method of semigroup, existence and uniqueness of mild and classical solu-
tions of quasilinear evolution equations have been discussed by Pazy [20]. The
problem of existence of solutions of quasilinear evolution equations in Banach
spaces has been studied by several authors [2, 6, 15, 16, 17, 18]. Pazy [20]
considered the following quasilinear equation of the form

u′(t) +A(t, u)u(t) = 0, 0 < t ≤ T,

u(0) = u0,

and discussed the mild and classical solutions by using the fixed point argument.
The existence of classical solution has been studied to the nonhomogeneous
quasilinear evolution equation

u′(t) +A(t, u)u(t) = f(t, u), 0 < t ≤ T,

u(0) = u0,

Received February 8, 2010; Revised May 14, 2010.
2010 Mathematics Subject Classification. 34G20, 47D03, 47H10.
Key words and phrases. contraction principle, mild and classical solution, semigroup

theory.
This Paper is supported by Dong-A University Research Foundation.

c⃝2011 The Korean Mathematical Society

585



586 D. G. PARK, K. BALACHANDRAN, AND F. PAUL SAMUEL

by Furuya [11], Kato [13] and Yagi [21]. Bahuguna [1] proved the existence,
uniqueness and continuous dependence of a strong solution of quasilinear inte-
grodifferential equation of the form

u′(t) +A(t, u)u(t) =

∫ t

0

a(t− s)k(s, u(s))ds+ f(t), 0 ≤ t ≤ T,

u(0) = u0,

by using the method of lines (also known as Rothe’s method) and the techniques
of Crandall and Souganidis [10]. He also established a local classical solution
for the same equation in [2]. Oka and Tanaka [19] investigated the existence
of classical solution of quasilinear integrodifferential equation of the hyperbolic
type

u′(t) = A(t, u)u(t) +

∫ t

0

F(t, s, u(s))u(s)ds, 0 ≤ t ≤ T,

u(0) = u0,

in a pair of Banach spaces (Y,X) such that Y is continuously imbedded in
X. Oka [18] proved the existence of classical solution of abstract quasilinear
integrodifferential equations. Balachandran and Uchiyama [5] discussed the
existence and uniqueness of local mild and classical solutions of quasilinear
integrodifferential equations. Recently Balachandran and Park [3] studied the
existence of solutions of quasilinear integrodifferential evolution equations by
using the Schauder fixed point theorem.

In this paper we study the following quasilinear delay integrodifferential
equation with time varying delay of the form

u′(t) +A(t, u)u(t)(1)

= K(u)(t) + f
(
t, u(t), u(β(t),

∫ t

0

b(t− s)h(s, u(s), u(γ(s)))ds
)
,

u(0) = u0, t ∈ [0, T ] = I,(2)

where A(t, u) is the infinitesimal generator of a C0-semigroup in a Banach space
X, u0 ∈ X, f : I ×X ×X ×X → X, h : I ×X ×X → X are functions and
K is the nonlinear Volterra operator

K(u)(t) =

∫ t

0

a(t− s)k(s, u(s), u(α(s)))ds.

Here a, b : I → I are real-valued continuous functions, k: I × X × X → X,
α, β, γ : I → I are absolutely continuous functions. The equations considered
in [1, 11, 13, 20, 21] are particular cases of the equation (1)-(2) and generalize
the results of [3, 4, 12, 14, 15, 20].
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2. Preliminaries

Let X and Y be two Banach spaces such that Y is densely and continuously
embedded in X. For any Banach space Z, the norm of Z is denoted by ∥ · ∥
or ∥ · ∥Z . The space of all bounded linear operators from X to Y is denoted
by B(X,Y ) and B(X,X) is written as B(X). We recall some definitions and
known facts from Pazy [20].

Definition 2.1. Let S be a linear operator in X and let Y be a subspace of
X. The operator S̃ defined by D(S̃) = {x ∈ D(S)∩ Y : Sx ∈ Y } and S̃x = Sx

for x ∈ D(S̃) is called the part of S in Y .

Definition 2.2. Let B be a subset of X and, for every 0 ≤ t ≤ T and b ∈ B,
let A(t, b) be the infinitesimal generator of a C0 semigroup St,b(s), s ≥ 0, on X.
The family of operators {A(t, b), (t, b) ∈ I ×B}, is stable if there are constants
M ≥ 1 and ω such that

ρ(A(t, b)) ⊃ (ω,∞) for (t, b) ∈ I ×B,

∥
k∏

j=1

R(λ : A(tj , bj))∥ ≤ M(λ− ω)−k

for λ > ω, 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ T, bj ∈ B, 1 ≤ j ≤ k.
The stability of {A(t, b)}, (t, b) ∈ I ×B implies (see [20]) that

∥
k∏

j=1

Stj ,bj (sj)∥ ≤ M exp

ω

k∑
j=1

sj

 , sj ≥ 0

0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ T, bj ∈ B, 1 ≤ j ≤ k. k = 1, 2, . . . .

Definition 2.3. Let St,b(s), s ≥ 0, be the C0-semigroup generated by A(t, b),
(t, b) ∈ I×B. A subspace Y of X is called A(t, b)-admissible if Y is an invariant
subspace of St,b(s) and the restriction of St,b(s) to Y is a C0-semigroup in Y .

Let B ⊂ X be a subset of X such that, for every (t, b) ∈ I×B, A(t, b) is the
infinitesimal generator of a C0-semigroup St,b(s), s ≥ 0 on X. We make the
following assumptions:

(H1) The family {A(t, b)}, (t, b) ∈ I ×B, is stable.

(H2) Y is A(t, b)-admissible for (t, b) ∈ I×B and the family {Ã(t, b)}, (t, b) ∈
I ×B of parts Ã(t, b) of A(t, b) in Y is stable in Y .

(H3) For (t, b) ∈ I ×B, D(A(t, b)) ⊃ Y , A(t, b) is a bounded linear operator
from Y to X and t → A(t, b) is continuous in the B(Y,X) norm ∥ · ∥
for every b ∈ B.

(H4) There is a positive constant N such that

∥A(t, b1)−A(t, b2)∥Y →X ≤ N∥b1 − b2∥X
holds for every b1, b2 ∈ B and 0 ≤ t ≤ T .
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Let B be a subset of X and {A(t, b), (t, b) ∈ I × B}, be a family of operators
satisfying the conditions (H1)-(H4). If u ∈ C(I : X) has values in B, then
there is a unique evolution system Uu(t, s), 0 ≤ s ≤ t ≤ T , in X satisfying (see
Theorem 5.3.1 and Lemma 6.4.2 in [20] pp. 135, 201–202).

(i) ∥Uu(t, s)∥ ≤ K1e
ω(t−s) and 0 ≤ s ≤ t ≤ T , where K1 and ω are

stability constants.

(ii)
∂+

∂t
Uu(t, s)y = A(s, u(s))Uu(t, s)y for y ∈ Y , and 0 ≤ s ≤ t ≤ T .

(iii)
∂

∂s
Uu(t, s)y = −Uu(t, s)A(s, u(s))y for y ∈ Y , and 0 ≤ s ≤ t ≤ T .

(H5) For every u ∈ C(I : X) satisfying u(t) ∈ B for 0 ≤ t ≤ T , we have

Uu(t, s)Y ⊂ Y, 0 ≤ s ≤ t ≤ T,

where Uu(t, s) is strongly continuous in Y for 0 ≤ s ≤ t ≤ T .
(H6) X and Y are reflexive Banach spaces and there exist an isometry be-

tween them.
(H7) For every (t, b1, b2, b3) ∈ I ×B ×B, f(t, b1, b2, b3) ∈ Y.
(H8) The real-valued function a and b are continuous on I and there exist

positive constants aT and bT such that |a(t)| ≤ aT and |b(t)| ≤ bT for
t ∈ I.

(H9) α, β, γ: I → I are absolutely continuous and there exist constants
δi > 0, i = 1, 2, 3 such that α′(t) ≥ δ1, β′(t) ≥ δ2 and γ′(t) ≥ δ3
respectively for 0 < t ≤ T .

(H10) The nonlinear map k : I ×X ×X → X satisfies∫ t

0

∥k(s, x1, y1)− k(s, x2, y2)∥ds ≤ NA[∥x1(t)− x2(t)∥+ ∥y1(t)− y2(t)∥]

for a.e. t ∈ I, where NA and N0 are positive constants and

N0 = max

∫ t

0

∥k(s, 0, 0)∥ds.

For the conditions (H11) and (H12), let Z be taken as both X and
Y .

(H11) f : I ×Z ×Z ×Z → Z is continuous and there exist constants FA > 0
and F0 > 0 such that

∥f(t, u1, v1, w1)− f(t, u2, v2, w2)∥Z
≤ FA(∥u1 − u2∥Z + ∥v1 − v2∥Z + ∥w1 − w2∥Z),

F0 = max
τ∈I

∥f(t, 0, 0, 0)∥Z .

(H12) h : I ×Z ×Z → Z is continuous and there exist constants HA > 0 and
H0 > 0 such that∫ t

0

∥h(s, u1, v1)− h(s, u2, v2)∥Z ds ≤ HA

(
∥u1(t)− u2(t)∥Z + ∥v1(t)− v2(t)∥

)
,
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H0 = max{
∫ t

0

∥h(s, 0, 0)∥Zds}.

Further, there exist a positive constant K0 such that for every u, v ∈ C(I;X)
with values in B and every y ∈ Y, we have

∥Uu(t, s)y − Uv(t, s)y∥X ≤ K0∥y∥Y
∫ t

s

∥u(τ)− v(τ)∥X dτ.

For details of the above mentioned results, we refer to Theorem 6.4.3 and
Lemma 6.4.4 in Pazy [20].

To prove our main result we need the following theorems.

Theorem 2.1 (Theorem 5.5.2 [20]). Let A(t), 0 ≤ t ≤ T, be the infinitesimal
generator of a C0 semigroup St(s), s ≤ 0 on X. If the family satisfying the
conditions (H1)-(H3) [20, Page 135], then there exists a unique evolution system
U(t, s), 0 ≤ t ≤ s ≤ T, in X satisfying

(E1) ∥U(t, s)∥ ≤ Meω(t−s) and 0 ≤ s ≤ t ≤ T,

(E2)
∂+

∂t
U(t, s)v

∣∣∣
t=s

= A(s)v for v ∈ Y , and 0 ≤ s ≤ T ,

(E3)
∂

∂s
U(t, s)v = −U(t, s)A(s)v for v ∈ Y , and 0 ≤ s ≤ t ≤ T,

where the derivative from the right in (E2) and the derivative in (E3) are in
the strong sense in X.

Theorem 2.2 (Theorem 5.5.2 [20]). Let A(t)t∈[0,T ] satisfy the conditions of

Theorem 2.1 and let U(t, s), 0 ≤ s ≤ t ≤ T be the evolution system given in
Theorem 2.1. If

(E4) U(t, s)Y ⊃ Y for 0 ≤ s ≤ t ≤ T.
(E5) For v ∈ Y, U(t, s)v is continuous in Y for 0 ≤ s ≤ t ≤ T, then for

every v ∈ Y, U(t, s)v is the unique Y -valued solution of the initial
value problem

du(t)

dt
= A(t)u(t) for 0 ≤ s < t ≤ T,(3)

u(s) = v.(4)

Theorem 2.3 (Theorem 5.5.2 [20]). Let {A(t)}t∈[0,T ] satisfy the condition of
Theorem 2.2. If f ∈ C([s, T ] : Y ), then for every v ∈ Y the initial value
problem

du(t)

dt
= A(t)u(t) + f(t) for 0 ≤ s < t ≤ T,(5)

u(s) = v,(6)

possesses a unique Y -valued solution u given by

u(t) = U(t, s)v +

∫ t

s

U(t, η)f(η)dη.(7)
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3. Existence of solutions

By a mild solution of (1)-(2), we mean a function u ∈ C(I : X) and u0 ∈ X
satisfying the integral equation

u(t) = Uu(t, 0)u0 +

∫ t

0

Uu(t, s)
[
K(u)(s)

+ f
(
s, u(s), u(β(s)),

∫ s

0

b(s− τ)h(τ, u(τ), u(γ(τ)))dτ
)]

ds.(8)

A function u ∈ C(I : X) such that u(t) ∈ D(A(t, u(t))) for t ∈ (0, T ], u ∈
C1((0, T ] : X) and satisfies (1)-(2) in X is called a classical solution of (1)-(2)
on [0, T ].

Theorem 3.1. Let u0 ∈ Y and the family A(t, b) of linear operators for t ∈
I = [0, T ] and b ∈ B = {u ∈ Y : ∥u∥Y ≤ r}, r > 0, satisfy the assumptions
(H1)-(H12) and A(t, b)u0 ∈ Y with

∥A(t, b)u0∥Y ≤ CA, CA > 0,

for all (t, b) ∈ I × B. Then there is a positive constant T0 such that the
quasilinear problem (1)-(2) has a unique classical solution u ∈ C([0, T0] : Y ) ∩
C1((0, T0] : X).

Proof. First we prove the existence of a unique local mild solution for (1) and
(2). The assumption (H5) implies that there exists a constant K1 > 0 such
that

∥Uu(t, s)∥B(Y ) ≤ K1

for s ≤ t, s, t ∈ I and every u ∈ C(I : X). Choose

T0 = min

{
T,

1

2K1CA
,

1

2T1
,

1

2T2

}
,

where

T1 = K1

{
r
[
aTNA(1 + 1/δ1) + FA(1 + 1/δ2) + bTFAHA(1 + 1/δ3)

]
+ aTN0 + bTFAH0 + F0

}
and

T2 = K0∥u0∥Y +K0T
[
r[aTNA(1 + 1/δ1)+ FA(1 + 1/δ2)+ bTFAHA(1 + 1/δ3)]

+ aTN0 + bTFAH0 + F0

]
+K1

[
aTNA(1 + 1/δ1) + FA(1 + 1/δ2)

+ bTFAHA(1 + 1/δ3)
]
.

Let S be the subset of C([0, T0] : X) defined by

S = {u : u ∈ C([0, T0] : X), ∥u(t)∥Y ≤ r, u(0) = u0 for 0 ≤ t ≤ T0}.
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Define a mapping P : S → S given by

(Pu)(t) = Uu(t, 0)u0 +

∫ t

0

Uu(t, s)
[
K(u)(s)

+ f(s, u(s), u(β(s)),

∫ s

0

b(s− τ)h(τ, u(τ), u(γ(τ)))dτ)
]
ds.

We claim that P maps S into S. Clearly Pu(0) = u0 and Pu(t) ∈ Y for
0 ≤ t ≤ T0 and it remains to show that ∥Pu(t)∥ ≤ r in Y . Integrating (iii) in
X from 0 to t, we find

Uu(t, 0)u0 − u0 = −
∫ t

0
Uu(t, τ)A(τ, u(τ))u0 dτ

and hence
∥Uu(t, 0)u0 − u0∥ ≤ K1CAT0.

Also we have

∥Pu(t)∥

= ∥Uu(t, 0)u0 − u0∥+
∫ t

0

∥Uu(t, s)
[ ∫ s

0

a(s− τ)k(τ, u(τ), u(α(τ)))dτ

+ f
(
s, u(s), u(β(s)),

∫ s

0

b(s− τ)h(τ, u(τ)u(γ(τ)))dτ
)]

∥ds

≤ K1CAT0 +K1

{∫ t

0

∫ s

0

∥a(s− τ)∥
[
∥k(τ, u(τ), u(α(s)))− k(τ, 0, 0)∥

+∥k(τ, 0, 0)∥
]
dτds+

∫ t

0

[
∥f(s, u(s), u(β(s)),

∫ s

0

b(s−τ)h(τ, u(τ), u(γ(τ)))dτ)

−f(s, 0, 0, 0)∥+ ∥f(s, 0, 0, 0)∥
]
ds
}
.

Using the assumptions (H8)-(H12), we get

∥Pu(t)∥

≤ K1{CAT0 + aTNA

∫ t

0

(∥u(s)∥+ ∥u(α(s))∥)ds+ aTN0T0

+ FA

∫ t

0

(∥u(s)∥+ ∥u(β(s))∥+ ∥b(s− τ)h(τ, u(τ), u(γ(τ))dτ∥)ds+ F0T0}

≤ K1{CAT0 + aTNArT0 + aTNA/δ1

∫ α(t)

α(0)

∥u(s)∥ds+ aTN0T0 + FArT0

+ FA/δ2

∫ β(t)

β(0)

∥u(s)∥ds+ bTFAHArT0 + bTFAHA/δ3

∫ γ(t)

γ(0)

∥u(s)∥ds

+ bTFAH0T0 + F0T0}

≤ K1T0

{
CA + r

[
aTNA(1 + 1/δ1) + FA(1 + 1/δ2) + bTFAHA(1 + 1/δ3)

]
+ aTN0 + bTFAH0 + F0

}
.
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From the assumption, we get ∥Pu(t)∥ ≤ r. Therefore P maps S into itself.
Moreover, if u, v ∈ S, then

∥Pu(t)− Pv(t)∥
≤ ∥Uu(t, 0)u0 − Uv(t, 0)u0∥

+

∫ t

0

∥Uu(t, s)
[
K(u)(s) + f(s, u(s), u(β(s)),

∫ s

0

b(s− τ)h(τ, u(τ), u(γ(τ)))dτ)
]

−Uv(t, s)
[
K(v)(s) + f(s, v(s), v(β(s)),

∫ s

0

b(s− τ)h(τ, v(τ), v(γ(τ)))dτ)
]
∥ds

≤ ∥Uu(t, 0)u0 − Uv(t, 0)u0∥

+

∫ t

0

∥Uu(t, s)
[
K(u)(s) + f(s, u(s), u(β(s)),

∫ s

0

b(s− τ)h(τ, u(τ), u(γ(τ)))dτ)
]

−Uv(t, s)
[
K(u)(s) + f(s, u(s), u(β(s)),

∫ s

0

b(s− τ)h(τ, u(τ), u(γ(τ)))dτ)
]
∥ds

−Uv(t, s)
[
K(v)(s) + f(s, v(s), v(β(s)),

∫ s

0

b(s− τ)h(τ, v(τ), v(γ(τ)))dτ)
]
∥ds.

From our assumption, we have

I1 ≤ K0∥u0∥Y T0 max
τ∈I

∥u(τ)− v(τ)∥,

I2 ≤
∫ t

0

∥Uu(t, s)− Uv(t, s)∥
[
∥K(u)(s)∥

+ ∥f(s, u(s), u(β(s)),
∫ s

0

b(s− τ)h(τ, u(τ), u(γ(τ)))dτ)∥
]
ds

≤ K0TT0

{
r[aTNA(1 + 1/δ1) + FA(1 + 1/δ2) + bTFAHA(1 + 1/δ3)]

+ aTN0 + bTFAH0 + F0

}
max
τ∈I

∥u(τ)− v(τ)∥,

I3 ≤
∫ t

0

∥Uv(t, s)∥
[
∥K(u)(s)−K(v)(s)∥

+ ∥f
(
s, u(s), u(β(s)),

∫ s

0

b(s− τ)h(τ, u(τ), u(γ(τ)))dτ)

− f(s, v(s), v(β(s)),

∫ s

0

b(s− τ)h(τ, v(τ), v(γ(τ)))dτ
)
∥
]
ds

≤ K1T0

{
aTNA(1 + 1/δ1) + FA(1 + 1/δ2) + bTFAHA(1 + 1/δ3)

}
×max

τ∈I
∥u(τ)− v(τ)∥.

From these inequalities it follows that, for any t ∈ I,

∥Pu(t)− Pv(t)∥ ≤ 1

2
max
τ∈I

∥u(τ)− v(τ)∥,



REGULARITY OF SOLUTIONS 593

so that P is a contraction on S. From the contraction mapping theorem, it
follows that P has a unique fixed point u ∈ S which is the mild solution of (1)
and (2) on [0, T0].

Now we consider the evolution equation

v′(t) +B(t)v(t) = l(t), t ∈ [0, T0],(9)

v(0) = u0,(10)

where B(t) = A(t, u(t)) and l(t) = K(u)(t) + f(t, u(t), u(β(t)),
∫ t

0
b(t − s)h(s,

u(s), u(γ(s))ds, t ∈ [0, T0], and u is the unique fixed point of P in S. We note
that B(t) satisfies (H1)-(H3) of [20] (Section 5.5.3) and l ∈ C(I : Y ). Theorem
5.5.2 in [20] implies that there exists a unique function v ∈ C(I : Y ) such that
v ∈ C1((0, T0] : X) satisfying (1) and (2) in X and v is given by

v(t) = Uu(t, 0)u0 +

∫ t

0

Uu(t, s)[K(u)(s)

+ f(s, u(s), u(β(s)),

∫ s

0

b(s− τ)(τ, u(τ), u(γ(τ)))dτ ]ds,

where Uu(t, s) is the evolution system generated by the family {A(t, u(t))}, t ∈
I, of the linear operators in X. The uniqueness of v implies that v = u on
t ∈ [0, T0]. Hence u is a unique local classical solution of (1)-(2) and u ∈
C([0, T0] : Y ) ∩ C1((0, T0] : X). □

4. Nonlocal Cauchy problem

The nonlocal Cauchy problem for semilinear evolution equations in Banach
space was studied first by Byszewski [7, 8, 9] where he established the existence
and uniqueness of mild and classical solutions. The nonlocal conditions were
motivated by physical problems and their importance is discussed in [7, 8, 9].
Balachandran et al [3, 4, 5, 6, 12] studied the nonlocal Cauchy problem for
various type of quasilinear integrodifferential equations. Consider the nonlocal
condition of the form

u(0) + g(u) = u0, t ∈ [0, T ] = I(11)

for the quasilinear integrodifferential equation (1).
Assume the following conditions:

(H13) g : C(I : B) → Y is Lipschitz continuous in X and bounded in Y , that
is, there exist constants G > 0 and G1 > 0 such that

∥g(u)∥Y ≤ G,

∥g(u)− g(v)∥Y ≤ G1 max
t∈I

∥u(t)− v(t)∥X .

(H14) There exists a positive constant r > 0 such that

K1

{
∥u0∥Y +G+ T0

[
r[aTNA(1 + 1/δ1)
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+FA(1 + 1/δ2) + bTFAHA(1 + 1/δ3)] + aTN0 + bTFAH0 + F0

]}
≤ r,

q =
{
K0T0

[
∥u0∥Y +G

]
+K1G1 +K0TT0

[
r[aTNA(1 + 1/δ1) + FA(1 + 1/δ2)

+ bTFAHA(1 + 1/δ3)] + aTN0 + bTFAH0 + F0

]
+K1T0

[
aTNA(1 + 1/δ1)

+ FA(1 + 1/δ2) + bTFAHA(1 + 1/δ3)
]}

< 1.

By a mild solution of (1) and (11), we mean a function u ∈ C(I : X) and
u0 ∈ X satisfying the integral equation

u(t) = Uu(t, 0)u0 − Uu(t, 0)g(u) +

∫ t

0

Uu(t, s)
[
K(u)(s)

+ f
(
s, u(s), u(β(s)),

∫ s

0

b(t− s)h(τ, u(τ), u(γ(τ)))dτ
)
ds
]
.(12)

A function u ∈ C(I;X) such that u(t) ∈ D(A(t, u(t))) for t ∈ (0, T ], u ∈
C1((0, T ] : X) and satisfies (1) and (11) in X is called a classical solution of
(1) and (11) on [0, T ].

Theorem 4.1. Let u0 ∈ Y and B = {u ∈ Y : ∥u∥Y ≤ r}, r > 0. If the
assumptions (H1)-(H14) are satisfied, then there is a positive constant T0 such
that the quasilinear problem (1) and (11) has a unique classical solution u ∈
C([0, T0] : Y ) ∩ C1((0, T0] : X).

Proof. First we prove the existence of a unique mild solution for (1) and (11).
The assumption (H5) implies that there exists a constant K1 > 0 such that

∥Uu(t, s)∥B(Y ) ≤ K1

for s ≤ t, s, t ∈ I and every u ∈ C(I;X). Let S be the subset of C([0, T0] : X)
defined by

S = {u : u ∈ C([0, T0] : X), ∥u(t)∥ ≤ r for 0 ≤ t ≤ T0}.
Define a mapping Q : S → S by

Qu(t) = Uu(t, 0)u0 − Uu(t, 0)g(u) +

∫ t

0

Uu(t, s)
[
K(u)(s)

+ f
(
s, u(s), u(β(s)),

∫ s

0

b(t− s)h(τ, u(τ), u(γ(τ)))dτ
)]

ds.

We claim that Q maps S into S. For u ∈ S, we have

∥Qu(t)∥
= ∥Uu(t, 0)u0 − Uu(t, 0)g(u)∥

+

∫ t

0

∥Uu(t, s)
[
K(u)(s) + f(s, u(s), u(β(s)),

∫ s

0

b(t− s)h(τ, u(τ)u(γ(τ)))dτ
]
ds∥

≤ K1

{
∥u0∥Y +G+ T0

[
r[aTNA(1 + 1/δ1) + FA(1 + 1/δ2) + bTFAHA(1 + 1/δ3)]
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+aTN0 + bTFAH0 + F0

]}
.

From the assumption (H14), one gets ∥Qu(t)∥ ≤ r. Therefore Q maps S into
itself. Moreover, if u, v ∈ S, then

∥Qu(t)−Qv(t)∥
≤ ∥Uu(t, 0)u0 − Uv(t, 0)u0∥+ ∥Uu(t, 0)g(u)− Uv(t, 0)g(v)∥

+

∫ t

0

∥Uu(t, s)
[
K(u)(s) + f

(
s, u(s), u(β(s)),

∫ s

0

b(t− s)h(τ, u(τ), u(γ(τ)))dτ
)]

−Uv(t, s)
[
K(v)(s) + f

(
s, v(s), v(β(s)),

∫ s

0

b(t− s)h(τ, v(τ), v((γ(τ)))dτ
)]

∥ds

≤
{
K0T0

[
∥u0∥Y +G

]
+K1G1 +K0TT0

[
r[aTNA(1 + 1/δ1) + FA(1 + 1/δ2)

+ bTFAHA(1 + 1/δ3)] + aTN0 + bTFAH0 + F0

]
+K1T0

[
aTNA(1 + 1/δ1)

+ FA(1 + 1/δ2) + bTFAHA(1 + 1/δ3)
]}

max
τ∈I

∥u(τ)− v(τ)∥

= qmax
τ∈I

∥u(τ)− v(τ)∥,

where 0 < q < 1. From these inequalities, it follows that, for any t ∈ I,

∥Qu(t)−Qv(t)∥ ≤ qmax
τ∈I

∥u(τ)− v(τ)∥,

so that Q is a contraction on S. Hence Q has a unique fixed point u ∈ S such
that Qu(t) = u(t) which is the mild solution of (1) and (11).

Now we consider the evolution equation

w′(t) +B(t)w(t) = v(t), t ∈ [0, T0],(13)

w(0) = u0 − g(u),(14)

where B(t) = A(t, u(t)) and v(t) = K(u)(t) + f(t, u(t), u(β(t)),
∫ t

0
b(t− s)h(s,

u(s), u(γ(s))ds, t ∈ [0, T0] and u is the unique fixed point of Q in S. We note
that B(t) satisfies (H1)-(H3) of [20] (Section 5.5.3) and v ∈ C(I : Y ). Theorem
5.5.2 in [20] implies that there exists a unique function w ∈ C(I : Y ) such that
w ∈ C1((0, T0] : X) satisfying (1) and (11) in X and w is given by

w(t) = Uu(t, 0)u0 − Uu(t, 0)g(u) +

∫ t

0

Uu(t, s)[K(u)(s)

+ f(s, u(s), u(β(s)),

∫ s

0

b(s− τ)(τ, u(τ), u(γ(τ)))dτ ]ds,

where Uu(t, s) is the evolution system generated by the family {A(t, u(t))}, t ∈
I, of the linear operators in X. The uniqueness of w implies that w = u
on t ∈ [0, T0]. Hence u is a unique classical solution of (1) and (11) and
u ∈ C([0, T0] : Y ) ∩ C1((0, T0] : X). □
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5. Conclusion

The present paper contains results concerning the existence and unique-
ness of classical solutions for a quasilinear delay integrodifferential equation
in Banach spaces. The result shows that the Banach fixed point theorem can
effectively used to study the regularity of solutions for abstract quasilinear
delay integrodifferential equation. Under suitable assumptions we have also
proved the classical solutions for quasilinear integrodifferential equation with
time varying delay and nonlocal condition.

Acknowledgement. The authors are thankful to the referee for the improve-
ment of the paper.
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