• Title/Summary/Keyword: continuous flow-through system

Search Result 139, Processing Time 0.021 seconds

Treatment of Wastewater Containing Cu(II)-EDTA Using Ferrate in Sequencing Batch Scale System (연속회분식 반응 장치에서 Ferrate를 이용한 Cu(II)-EDTA 함유 폐수 처리 연구)

  • Kim, Hyoung-Uk;Kim, Byeong-Kwon;Lee, Seung-Mok;Yang, Jae-Kyu;Kim, Hyun-Ook;Kwan, Jung-An;Im, Hang-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.7
    • /
    • pp.729-734
    • /
    • 2008
  • The higher valence state of iron i.e., Fe(VI) was employed for the treatment of Cu(II)-EDTA in the aqueous/waste waters. The ferrate(VI) was prepared through wet oxidation of Fe(III) by sodium hypochlorite. The purity of prepared Fe(VI) was above 93%. The stability of Fe(VI) solution decreased as solution pH decreased through self decomposition. The reduction of Fe(VI) was obtained by using the UV-Visible measurements. The dissociation of Cu(II)-EDTA complex through oxidation of EDTA using Fe(VI) and subsequent treatment of organic matter and metal ions by Fe(III) reduced from Fe(VI) in bench-scale of continuous flow reactor were studied. The removal efficiencies of copper were 69% and 79% in pH control basin and reactor, respectively, at 120 minutes as retention time. In addition, Cu(II)-EDTA in the reactor was decomplexated more than 80% after 120 minutes as retention time. From this work, a continuous treatment process for the wastewater containing metal and EDTA by employing Fe(VI) as muluti-functional agent was developed.

The Effects of Game User's Social Capital and Information Privacy Concern on SNGReuse Intention and Recommendation Intention Through Flow (게임 이용자의 사회자본과 개인정보제공에 대한 우려가 플로우를 통해 SNG 재이용의도와 추천의도에 미치는 영향)

  • Lee, Ji-Hyeon;Kim, Han-Ku
    • Management & Information Systems Review
    • /
    • v.37 no.4
    • /
    • pp.21-39
    • /
    • 2018
  • Today, Mobile Instant Message (MIM) has become a communication means which is commonly used by many people as the technology on smart phones has been enhanced. Among the services, KakaoGame creates much profits continuously by using its representative Kakao platform. However, even though the number of users of KakaoGame increases and the characteristics of the users are more diversified, there are few researches on the relationship between the characteristics of the SNG users and the continuous use of the game. Since the social capital that is formed by the SNG users with the acquaintances create the sense of belonging, its role is being emphasized under the environment of social network. In addition, game user's concerns about the information privacy may decrease the trust on a game APP, and it also caused to threaten about the game system. Therefore, this study was designed to examine the structural relationships among SNG users' social capital, concerns about the information privacy, flow, SNG reuse intention and recommendation intention. The results from this study are as follow. First of all, the participants' bridging social capital had a positive effect on the flow of an SNG, but the bonding social capital had a negative effect on the flow of an SNG. In addition, awareness of information privacy concern had a negative effects on the flow of an SNG, but control of information privacy concern had a positive effect on the flow of an SNG. Lastly, the flow of an SNG had a positive effect on the reuse intention and recommendation intention of an SNG. Also, reuse intention of an SNG had a positive effect on the recommendation intention. Based on the results from this study, academic and practical implications can be drawn. First, This study focused on KakaoTalk which has both of the closed and open characteristics of an SNS and it was found that the SNG user's social capital might be a factor influencing each user's behaviors through the user's flow experiences in SNG. Second, this study extends the scope of prior researches by empirically analysing the relationship between the concerns about the SNG user's information privacy and flow of an SNG. Finally, the results of this research can provide practical guidelines to develop effective marketing strategies considering them for SNG companies.

Large scale splitter-less FFD-SPLITT fractionation: effect of flow rate and channel thickness on fractionation efficiency (대용량 중력장 SPLITT Fractionation: 분획효율에 미치는 채널 두께와 유속의 영향)

  • Yoo, Yeongsuk;Choi, Jaeyeong;Kim, Woon Jung;Eum, Chul Hun;Jung, Euo Chang;Lee, Seungho
    • Analytical Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.34-40
    • /
    • 2014
  • SPLITT fractionation (SF) allows continuous (and thus a preparative scale) separation of micronsized particles into two size fractions ('fraction-a' and 'fraction-b'). SF is usually carried out in a thin rectangular channel with two inlets and two outlets, which is equipped with flow stream splitters at the inlet and the outlet of the channel, respectively. A new large scale splitter-less gravitational SF (GSF) system had been assembled, which was designed to eliminate the flow stream splitters and thus is operated by the full feed depletion (FFD) mode (FFD-GSF). In the FFD mode, there is only one inlet through which the sample is fed. There is no carrier liquid fed into the channel, and thus prevents the sample dilution. The effects of the sample-feeding flow rate, the channel thickness on the fractionation efficiency (FE, number % of particles that have the size predicted by theory) of FFD-GSF was investigated using industrial polyurethane (PU) latex beads. The carrier liquid was water containing 0.1% FL-70 (particle dispersing agent) and 0.02% sodium azide (used as bactericide). The sample loading rate was varied from about 4 to 7 L/hr with the sample concentration fixed at 0.01%. The GSF channel thickness was varied from 900 to $1300{\mu}m$. Particles exiting the GSF channel were collected and monitored by optical microscopy (OM). Sample recovery was monitored by collecting the fractionated particles on a $0.45{\mu}m$ membrane filter. It was found that FE of fraction-a was increased as the channel thickness increases, and FE of fraction-b was increased as the flow rate was increased. In all cases, the sample recovery has higher than 95%. It seems the new splitter-less FFD GSF system could become a useful tool for large scale separations of various types of micron-sized particles.

A Case Study on Improvement of Field Training Coursework for Engineering Education - Comparison Korea with France (한국과 프랑스의 현장 실습 중심의 공학 교육 운영에 관한 사례 분석)

  • Kim, Hyeon-A;Hong, Chol-Ho;Kim, Byeong-Sam
    • Journal of Engineering Education Research
    • /
    • v.10 no.2
    • /
    • pp.5-18
    • /
    • 2007
  • This paper presents a concept of training coursework for engineers in cooperation with the industry combining system, comparing Korea with France. The students, after first two years in a university for the foundation/basic courses, will be centered in the industry, rather than at an academic institution, where field training engineering coursework will be offered in structured or capstone design(problem based learning) formats through the industry. This study on the improvement of the concept has several advantages including the followings ; 1) Industry hiring local-area students who have the potential to be long-term employees; 2) Industry's immediate access to employees with developing engineering skills; 3) On-the-job training reduced industry training costs after graduation; 4) More effective learning through observing complex operations; 5) Students and industry input for continuous improvement of the curriculum; 6) Greater amenability on the part of industry to actively participate in research and development; 7) Increasing in the flow of real research problems for engineering. Finally, the implications for student quality, accreditation, assessment of partnership, academic freedom, and fundraising for scholarships and researches are discussed briefly.

Fe0/C-bentonite alginate beads and oyster shell fixed-bed column combined process to continuously remove N-acetyl-p-aminophenol in persulfate system

  • Wang, Bing-huang;Zhang, Qian;Honga, Jun-ming
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.301-311
    • /
    • 2018
  • In this study, the ion-gelation method was applied to fabricate novel Fe-carbon-bentonite-alginate beads ($Fe^0$/C-BABs). $Fe^0$/C-BABs could effectively control Fe release during persulfate (PS) activation in N-acetyl-p-aminophenol (APAP) oxidation. A novel two-stage approach that combined $Fe^0$/C-BABs and an oyster-shell-filled bed (OSFB) column was developed to address the low pH and high Fe concentration of the effluent of the traditional PS process. The application of the $Fe^0$/C-BABs and OSFB column regulated pH levels and Fe release during the advanced oxidation of APAP. The characteristics of $Fe^0$/C-BABs were also investigated through scanning electron microscopy, energy dispersive spectrometry, and Fourier transform infrared spectroscopy. The long-term operation performance of $Fe^0$/C-BABs in a continuous fixed-bed reactor under simultaneous PS and APAP feeding was also evaluated. The effects of initial PS concentration, pH, fixed-bed weight, in-flow rate, and dissolved oxygen (DO) were investigated. Under selected conditions, 86.3% efficiency was achieved during the first stage of APAP degradation (effluent pH of 3.05, Fe contents: $106.25mgL^{-1}$). Water quality improved after the effluent was passed through the OSFB column (effluent pH of 6.32, Fe contents: $21.43mgL^{-1}$). Moreover, this study analyzed the free radicals and intermediates produced during APAP degradation to identify the possible routes of APAP degradation.

A Study on the Development of a Infusion Pump based on an Active Muscle Pump (능동형 근육펌프 구조의 수액 주입 펌프 개발에 관한 연구)

  • Lee, Jeong-Whan;Lee, Sang-Yeob;Lee, Jung-Eun;Ahn, Ihn-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.443-449
    • /
    • 2022
  • In this study, in order to improve the disadvantages of the environmental error of the infusion set that performs infusion therapy in the existing clinical practice and to maximize the user's convenience by miniaturizing the existing infusion pump system, the structure of the muscle pump of the human vein was imitated. As a double check valve method, a method for preventing the backflow of fluid and discharging a constant fluid in one direction by external pressure was proposed. The proposed bio-mimic muscle pump uses a check valve that controls the flow of fluid in one direction and a silicone tube with elasticity, and a chamber is constructed. A peristaltic pump for applying intermittent pressure to the tube chamber was constructed using a multi-cam structure roller. In order to verify the performance of the proposed pump, optimization was performed while changing the number of multi-cam rollers and adjusting the speed of the roller driving motor, and the reproducibility of the instantaneous discharge amount and the continuous discharge amount of the pump was compared and tested. The performance of the muscle pump proposed in this study was verified through experiments that it can inject up to 1L of fluid within 12 hours, and that it is possible to inject the fluid with an accuracy of ±0.1ml. Real-time monitoring of the fluid injection volume through the bio-mimic muscle pump proposed in this study not only increases the convenience of the administrator, but also provides a precise fluid administration environment to more patients at a low cost, and additionally applies bubble detection and occlusion detection technology If so, it is believed that a safer medical environment can be provided to patients.

Optimal Design of Generalized Process-storage Network Applicable To Polymer Processes (고분자 공정에 적용할 수 있는 일반화된 공정-저장조 망구조 최적설계)

  • Yi, Gyeongbeom;Lee, Euy-Soo
    • Korean Chemical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.249-257
    • /
    • 2007
  • The periodic square wave (PSW) model was successfully applied to the optimal design of a batch-storage network. The network structure can cover any type of batch production, distribution and inventory system, including recycle streams. Here we extend the coverage of the PSW model to multitasking semi-continuous processes as well as pure continuous and batch processes. In previous solutions obtained using the PSW model, the feedstock composition and product yield were treated as known constants. This constraint is relaxed in the present work, which treats the feedstock composition and product yield as free variables to be optimized. This modification makes it possible to deal with the pooling problem commonly encountered in oil refinery processes. Despite the greater complexity that arises when the feedstock composition and product yield are free variables, the PSW model still gives analytic lot sizing equations. The ability of the proposed method to determine the optimal plant design is demonstrated through the example of a high density polyethylene (HDPE) plant. Based on the analytical optimality results, we propose a practical process optimality measure that can be used for any kind of process. This measure facilitates direct comparison of the performance of multiple processes, and hence is a useful tool for diagnosing the status of process systems. The result that the cost of a process is proportional to the square root of average flow rate is similar to the well-known six-tenths factor rule in plant design.

A STUDY ON THE FLOW CHARACTERISTICS OF AIR-KNIFE USING A CONSTANT EXPANSION RATE NOZZLE (팽창률이 일정한 노즐을 사용한 AIR-KNIFE 유동에 관한 연구)

  • Lee, Dong-Won;Kang, Nam-Cheol;Kim, Guen-Young;Kwon, Young-Doo;Kwon, Soon-Bum
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.1-7
    • /
    • 2008
  • In the process of continuous hot-dip galvanizing, it is well known that the gas wiping through an air knife system is most effective because of its uniformity in coating thickness, possibility of thin coating, workability in high speed, and simplicity of control. However, gas wiping used in the galvanizing process brings about a problem of splashing at the strip edge above a certain high speed of process. It is also known that the problem of edge splashing is more harmful than that at the mid strip surface. For a given liquid(of a certain viscosity and surface tension), the onset of splashing mainly depends upon the strip velocity, the gas-jet pressure, and the nozzle's stand-off distance. In these connections in the present study, we proposed three kinds of air knife system having nozzles of constant expansion rate, and compared the jet structures issuing from newly proposed nozzle systems with the result by a conventional one. In numerical analysis, the governing equations are consisted of two-dimensional time dependent Navier-Stokes equations, and the standard k-${\varepsilon}$ turbulence model is employed to solve turbulence stress and so on. As the result, it is found that we had better use the constant expansion-rate nozzle which can be interpreted from the point view of the energy saving for the same coating thickness. Also, we better reduce the size of separation bubble and enhance the cutting ability at the strip surface, by using an air-knife having constant expansion-rate nozzle.

Deposition and Electrical Properties of Al2O3와 HfO2 Films Deposited by a New Technique of Proximity-Scan ALD (PS-ALD) (Proximity-Scan ALD (PS-ALD) 에 의한 Al2O3와 HfO2 박막증착 기술 및 박막의 전기적 특성)

  • Kwon, Yong-Soo;Lee, Mi-Young;Oh, Jae-Eung
    • Korean Journal of Materials Research
    • /
    • v.18 no.3
    • /
    • pp.148-152
    • /
    • 2008
  • A new cost-effective atomic layer deposition (ALD) technique, known as Proximity-Scan ALD (PS-ALD) was developed and its benefits were demonstrated by depositing $Al_2O_3$ and $HfO_2$ thin films using TMA and TEMAHf, respectively, as precursors. The system is consisted of two separate injectors for precursors and reactants that are placed near a heated substrate at a proximity of less than 1 cm. The bell-shaped injector chamber separated but close to the substrate forms a local chamber, maintaining higher pressure compared to the rest of chamber. Therefore, a system configuration with a rotating substrate gives the typical sequential deposition process of ALD under a continuous source flow without the need for gas switching. As the pressure required for the deposition is achieved in a small local volume, the need for an expensive metal organic (MO) source is reduced by a factor of approximately 100 concerning the volume ratio of local to total chambers. Under an optimized deposition condition, the deposition rates of $Al_2O_3$ and $HfO_2$ were $1.3\;{\AA}/cycle$ and $0.75\;{\AA}/cycle$, respectively, with dielectric constants of 9.4 and 23. A relatively short cycle time ($5{\sim}10\;sec$) due to the lack of the time-consuming "purging and pumping" process and the capability of multi-wafer processing of the proposed technology offer a very high through-put in addition to a lower cost.

Multi Label Deep Learning classification approach for False Data Injection Attacks in Smart Grid

  • Prasanna Srinivasan, V;Balasubadra, K;Saravanan, K;Arjun, V.S;Malarkodi, S
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2168-2187
    • /
    • 2021
  • The smart grid replaces the traditional power structure with information inventiveness that contributes to a new physical structure. In such a field, malicious information injection can potentially lead to extreme results. Incorrect, FDI attacks will never be identified by typical residual techniques for false data identification. Most of the work on the detection of FDI attacks is based on the linearized power system model DC and does not detect attacks from the AC model. Also, the overwhelming majority of current FDIA recognition approaches focus on FDIA, whilst significant injection location data cannot be achieved. Building on the continuous developments in deep learning, we propose a Deep Learning based Locational Detection technique to continuously recognize the specific areas of FDIA. In the development area solver gap happiness is a False Data Detector (FDD) that incorporates a Convolutional Neural Network (CNN). The FDD is established enough to catch the fake information. As a multi-label classifier, the following CNN is utilized to evaluate the irregularity and cooccurrence dependency of power flow calculations due to the possible attacks. There are no earlier statistical assumptions in the architecture proposed, as they are "model-free." It is also "cost-accommodating" since it does not alter the current FDD framework and it is only several microseconds on a household computer during the identification procedure. We have shown that ANN-MLP, SVM-RBF, and CNN can conduct locational detection under different noise and attack circumstances through broad experience in IEEE 14, 30, 57, and 118 bus systems. Moreover, the multi-name classification method used successfully improves the precision of the present identification.