Browse > Article
http://dx.doi.org/10.5806/AST.2014.27.1.34

Large scale splitter-less FFD-SPLITT fractionation: effect of flow rate and channel thickness on fractionation efficiency  

Yoo, Yeongsuk (Department of Chemistry, Hannam University)
Choi, Jaeyeong (Department of Chemistry, Hannam University)
Kim, Woon Jung (Department of Chemistry, Hannam University)
Eum, Chul Hun (Geochemical Analysis Center, Korea Institute of Geoscience and Mineral Resources)
Jung, Euo Chang (Nuclear Chemistry Research Center, Korea Atomic Energy Research Institute)
Lee, Seungho (Department of Chemistry, Hannam University)
Publication Information
Analytical Science and Technology / v.27, no.1, 2014 , pp. 34-40 More about this Journal
Abstract
SPLITT fractionation (SF) allows continuous (and thus a preparative scale) separation of micronsized particles into two size fractions ('fraction-a' and 'fraction-b'). SF is usually carried out in a thin rectangular channel with two inlets and two outlets, which is equipped with flow stream splitters at the inlet and the outlet of the channel, respectively. A new large scale splitter-less gravitational SF (GSF) system had been assembled, which was designed to eliminate the flow stream splitters and thus is operated by the full feed depletion (FFD) mode (FFD-GSF). In the FFD mode, there is only one inlet through which the sample is fed. There is no carrier liquid fed into the channel, and thus prevents the sample dilution. The effects of the sample-feeding flow rate, the channel thickness on the fractionation efficiency (FE, number % of particles that have the size predicted by theory) of FFD-GSF was investigated using industrial polyurethane (PU) latex beads. The carrier liquid was water containing 0.1% FL-70 (particle dispersing agent) and 0.02% sodium azide (used as bactericide). The sample loading rate was varied from about 4 to 7 L/hr with the sample concentration fixed at 0.01%. The GSF channel thickness was varied from 900 to $1300{\mu}m$. Particles exiting the GSF channel were collected and monitored by optical microscopy (OM). Sample recovery was monitored by collecting the fractionated particles on a $0.45{\mu}m$ membrane filter. It was found that FE of fraction-a was increased as the channel thickness increases, and FE of fraction-b was increased as the flow rate was increased. In all cases, the sample recovery has higher than 95%. It seems the new splitter-less FFD GSF system could become a useful tool for large scale separations of various types of micron-sized particles.
Keywords
SPLITT; throughput; fractionation efficiency; sample recovery; separation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J. C. Giddings, Sep. Sci. Technol., 20(9-10), 749-768 (1985).   DOI   ScienceOn
2 S. R. Springston, M. N. Myers and J. Calvin Giddings, Anal. Chem., 59(2), 344-350 (1987).   DOI
3 Y. Gao, M. N. Myers, B. N. Barman and J. Calvin Giddings, Part. Sci. Technol., 9(3-4), 105-118 (1991).   DOI
4 J. C. Giddings, Sep. Sci. Technol., 27(11), 1489-1504 (1992).   DOI
5 P. S. Williams, S. Levin, T. Lenczycki and J. C. Giddings, Ind. Eng. Chem. Res., 31(9), 2172-2181 (1992).   DOI
6 C. B. Fuh and J. C. Giddings, Sep. Sci. Technol., 32(18), 2945-2967 (1997).   DOI   ScienceOn
7 C. B. Fuh, M. N. Myers and J. C. Giddings, Anal. Chem., 64(24), 3125-3132 (1992).   DOI
8 S. Levin and J. C. Giddings, J. Chem. Technol. Biotechnol., 50(1), 43-56 (1991).
9 J. Zhang, P. S. William, M. N. Myers and J. C. Giddings, Sep. Sci. Technol., 29(18), 2493-2522 (1994).   DOI   ScienceOn
10 Y. Jiang, A. Kummerow and M. Hansen, J. Microcolumn Sep., 9(4), 261-273 (1997).   DOI
11 Y. Jiang, M. E. Miller, M. E. Hansen, M. N. Myers and P. S. Williams, J. Magn. Magn. Mater., 194(1), 53-61 (1999).   DOI   ScienceOn
12 R. G. Keil, E. Tsamakis, C. B. Fuh, J. C. Giddings and J. I. Hedges, Geochim. Cosmochim. Acta, 58(2), 879-893 (1994).   DOI   ScienceOn
13 F. Dondi, C. Contado, G. Blo and S. Garcia Martin, Chromatographia, 48(9-10), 643-654 (1998).   DOI   ScienceOn
14 M. H. Moon, D. Kang, H. Lim, J. E. Oh and Y. S. Chang, Environ. Sci. Technol., 36(20), 4416-4423 (2002).   DOI   ScienceOn
15 S. Lee, T. W. Lee, S. K. Cho, S. T. Kim, D. Y. Kang, H. Kwen, S. K. Lee and C. H. Eum, Microchem. J., 95(1), 11-19 (2010).   DOI   ScienceOn
16 C. B. Fuh, M. N. Myers and J. C. Giddings, Ind. Eng. Chem. Res., 33(2), 355-362 (1994).   DOI
17 C. Bor Fuh and S. Y. Chen, J. Chromatogra. A, 813(2), 313-324 (1998).   DOI   ScienceOn
18 C. Contado and F. Dondi, J. Sep. Sci., 26(5), 351-362 (2003).   DOI   ScienceOn
19 H. J. Choi, W. J. Kim, C. H. Eum and S. Lee, Anal. Sci. Technol., 26(1), 34-41 (2013).   DOI   ScienceOn
20 A. De Momi and J. R. Lead, Environ. Sci. Technol., 40(21), 6738-6743 (2006).   DOI   ScienceOn
21 G. Blo, C. Contado, D. Grandi, F. Fagioli and F. Dondi, Anal. Chim. Acta, 470(2), 253-262 (2002).   DOI   ScienceOn
22 H. Tsai, Y. S. Fang, and C. B. Fuh, BMRT., 4:6, 1-7 (2006).
23 M. H. Moon, S. G. Yang, J. Y. Lee and S. Lee, Anal. Bioanal. Chem., 381(6), 1299-1304 (2005).   DOI   ScienceOn
24 S. Levin, M. N. Myers and J. C. Giddings, Sep. Sci. Technol., 24(14), 1245-1259 (1989).   DOI
25 C. Contado, F. Dondi, R. Beckett and J. C. Giddings, Anal. Chim. Acta, 345(1-3), 99-110 (1997).   DOI   ScienceOn
26 S. Lee, J. Y. Lee, T. W. Lee, E. C. Jung and S. K. Cho, Bull. Korean Chem. Soc., 32(12), 4291-4296 (2011).   DOI   ScienceOn
27 C. B. Fuh, E. M. Trujillo and J. C. Giddings, Sep. Sci. Technol., 30(20), 3861-3876 (1995).   DOI