• 제목/요약/키워드: continuous fiber

검색결과 427건 처리시간 0.028초

Studies on Melt Spinning of PET Hollow Fibers

  • O Tae-Hwan;Lee Mu-Seok;Kim Sang-Yong;Sim Hyeon-Ju
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.111-115
    • /
    • 1998
  • Fiber spinning is a continuous deformation process by which material is converted into a fiber. The melt spinning process was analyzed mainly by employing an asymptotic method of the so-called thin filament equations which formulates dynamics of spinning process by averaging over the cross-section of filament the set of fundamental equations. The method gives the approximate results for commonly used circular fiber spinning.(omitted)

  • PDF

단방향 연속 섬유 복합재 횡단면에서 섬유 배열에 따른 응력 분포 변화 (Effects of Fiber Arrangements on Stress Distributions over the Transverse Cross Section of Unidirectionally Continuous Fiber-reinforced Composites)

  • 최수훈;지우석
    • Composites Research
    • /
    • 제33권1호
    • /
    • pp.30-37
    • /
    • 2020
  • 단방향 연속 섬유 강화 복합소재에 대하여 섬유 배열에 따른 응력 분포 양상을 연구하기 위해 단면 형상을 대표하는 체적 요소를 생성하였다. 대표 체적 요소에 횡방향 하중을 가하였을 때, 섬유와 기지재 강성의 차이로 인해 섬유 둘레에서 응력 집중 현상이 발생하며, 섬유 간 좁은 간격 때문에 집중된 응력이 중첩되며 섬유 주변에서 높은 응력이 구해질 것이라 쉽게 예측할 수 있다. 본 연구에서는 섬유 둘레 응력 증감이 단순히 섬유 간 간격 뿐 아니라 섬유의 상대적 위치가 하중 방향과 이루는 각도에 의해서도 결정됨을 보여준다. 정규 육각 구조를 가지는 대표 체적 요소의 중앙에 위치한 섬유를 다양한 방향으로 이동시키며 횡방향 하중을 가하여, 섬유 주변 응력이 증가하거나 감소하는 양상을 유한요소해석 기법을 이용해 측정하였다. 섬유 간 거리가 최소이면서 두 섬유의 중심을 잇는 선분의 방향이 하중 방향과 일치할 때 응력이 최대로 증가하였으며, 섬유 간 거리가 최소라 하더라도 하중 방향에 수직일 때 최대 응력은 오히려 감소한다는 것을 보여준다.

횡하중을 받는 SiC/Ti-15-3 MMC 복합재 계면영역에서의 탄소성 응력장분포거동(II) (Elastic-Plastic Stress Distributions Behavior in the Interface of SiC/Ti-15-3 MMC under Transverse Loading(II))

  • 강지웅;권오헌
    • 한국안전학회지
    • /
    • 제20권2호
    • /
    • pp.26-31
    • /
    • 2005
  • The strong continuous fiber reinforced metal matrix composites (MMCs) are recently used in aerospace and transportation applications as an advanced material due to its high strength and light weight. Unidirectional fiber-metal matrix composites have superior mechanical properties along the longitudinal direction. However, the applicability of continuous fiber reinforced MMCs is somewhat limited due to their relatively poor transverse properties. Therefore, the transverse properties of MMCs are significantly influenced by the properties of the fiber/matrix interface. In order to be able to utilize these MMCs effectively and with safety, it must be determined their elastic plastic behaviors at the interface. In this study, the interfacial stress states of transversely loaded unidirectional fiber reinforced metal matrix composites investigated by using elastic-plastic finite element analysis. Different fiber volume fractions $(5-60\%)$ were studied numerically. The interlace was treated as three thin layer (with different properties) with a finite thickness between the fiber and the matrix. The fiber is modeled as transversely isotropic linear-elastic, and the matrix as isotropic elastic-plastic material. Using proposed model, the effects of the interface region and fiber arrangement in MMCs on the distributions of stress and strain are evaluated. The stress distributions of a thin multi layer interface have much less changes compared with conventional perfect interface. The analyses were based on a two-dimensional generalized plane strain model of a cross-section of an unidirectional composite by the ANSYS finite element analysis code.

테라헤르츠파를 이용한 FRP 복합재료의 비파괴결함평가 (Nondestructive Evaluation in the Defects of FRP Composites By Using Terahertz Waves)

  • 임광희;김지훈
    • 한국생산제조학회지
    • /
    • 제21권2호
    • /
    • pp.252-258
    • /
    • 2012
  • A study of terahertz waves was made for the nondestructive evaluation of FRP (Fiber reinforced plastics) composite materials. The terahertz systems were consisted of time domain spectroscopy (TDS) and continuous wave (CW). The composite materials investigated include both non-conducting polymeric composites and conducting carbon fiber composites. Terahertz signals in the TDS mode resembles that of ultrasound; however, unlike ultrasound, a terahertz pulse was not able to detect a material with conductivity. The CFRP (Carbon fiber reinforced plastics) laminates were utilized for confirming the experimentation in the terahertz NDE. In carbon composites the penetration of terahertz waves is quite limited and the detection of flaws is strongly affected by the angle between the electric field direction of the terahertz waves and the intervening fiber directions. A refractive index (n) was defined as one of mechanical properties; so a method was obtained in order solve the "n" in the material with non-conductivity. The usefulness and limitations of terahertz radiation are investigated for the NDE of FRP composites.

Research on residual stress in SiCf reinforced titanium matrix composites

  • Qu, Haitao;Hou, Hongliang;Zhao, Bing;Lin, Song
    • Steel and Composite Structures
    • /
    • 제17권2호
    • /
    • pp.173-184
    • /
    • 2014
  • This study aimed to theoretical calculate the thermal residual stress in continuous SiC fiber reinforced titanium matrix composites. The analytical solution of residual stress field distribution was obtained by using coaxial cylinder model, and the numerical solution was obtained by using finite element model (FEM). Both of the above models were compared and the thermal residual stress was analyzed in the axial, hoop, radial direction. The results indicated that both the two models were feasible to theoretical calculate the thermal residual stress in continuous SiC fiber reinforced titanium matrix composites, because the deviations between the theoretical calculation results and the test results were less than 8%. In the titanium matrix composites, along with the increment of the SiC fiber volume fraction, the longitudinal property was improved, while the equivalent residual stress was not significantly changed, keeping the intensity around 600 MPa. There was a pronounced reduction of the radial residual stress in the titanium matrix composites when there was carbon coating on the surface of the SiC fiber, because carbon coating could effectively reduce the coefficient of thermal expansion mismatch between the fiber and the titanium matrix, meanwhile, the consumption of carbon coating could protect SiC fibers effectively, so as to ensure the high-performance of the composites. The support of design and optimization of composites was provided though theoretical calculation and analysis of residual stress.

SiC 장섬유 강화 SiC 기지 복합재료의 고온강도 특성 (High Temeprature Strength Property of Continuous SiC Fiber Reinforced SiC Matrix Composites)

  • 신윤석;이상필;이진경;이준현
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.102-105
    • /
    • 2005
  • The mechanical properties of $SiC_f/SiC$ composites reinforced with continuous SiC fiber have been investigated in conjunction with the detailed analysis of their microstructures. Especially, the effect of test temperature on the characterization of $SiC_f/SiC$ composites was examined. In this composite system, a braiding Hi-Nicalon SiC fibric was selected as a reinforcement. $SiC_f/SiC$ composites have been fabricated by the reaction sintering process, using the complex matrix slurry with a constant composition ratio of SiC and C particles. The characterization of $RS-SiC_f/SiC$ composites was investigated by means of SEM, EDS and three point bending test. Based on the mechanical property-microstructure correlation, the high temperature applicability of $RS-SiC_f/SiC$ composites was discussed.

  • PDF

연속섬유보강토공법의 하천구역 적용사례에 관한 연구 (Application of Continuous Fiber Soil Reinforcement System in Riparian Slopes)

  • 고정현;허영진;최재용
    • 한국환경복원기술학회지
    • /
    • 제14권3호
    • /
    • pp.169-176
    • /
    • 2011
  • The purpose of this study is to examine the ecologically suitable restoration characteristics in riparian slopes constructed by continuous fiber soil reinforced system (Geofiber system) which does not contain the concrete materials. The findings are as follows : (1) as the tested soil was not washed away by rainfalls and floods, Geofiber could replace the concrete wall and gravity stone net bag technique from the civil engineering structural point of view; (2) after one year of the construction, it was monitored that land cover ratio was 80-90%, which indirectly shows that vegetation is safely maintained; and (3) at the same time, 5-8 flora species were found in each test grid and more importantly dominant species have been moved from alien species to native herbaceous plants. From the above findings, Geofiber system is recommendable to restore the riparian slopes in terms of stability and natural landscape points. However, a long term monitering is needed considering flora succession process in a given environment as well as suitability tests should be carried out through the comparative investigations in other environments.

Mechanical Properties of 2-D Silica-Silica Continuous Fiber-reinforced Ceramic-matrix Composite Fabricated by Sol-Gel Infiltration

  • Kim, Ha-Neul;Kim, Dong-Jun;Kang, Eul-Son;Kim, Do-Kyung
    • 한국재료학회지
    • /
    • 제19권7호
    • /
    • pp.391-396
    • /
    • 2009
  • 2-dimensional silica-silica Continuous Fiber-reinforced Ceramic.matrix Composites (CFCCs) were fabricated by a sol-gel infilitration method that has a changing processing condition, such as the repetitions of infilitration. In order to investigate the relationship between the processing condition and the mechanical properties of composites, the mechanical properties of specimens were measured by means of a 4-point flexural strength test while the evidence of strength degradation were microstructurally characterized. There seemed to be a minimum density value that existed at which the delamination between the fabrics would not occur. In the case that the density of silica CFCCs exceeded 1.55 g/$cm^3$, the flexural strength also exceeded approximately 18 MPa at least. By applying the Minimum Solid Area (MSA) analysis of the porous structure, the correlation between the relative density and the mechanical properties of composites will be discussed.

광섬유 센서의 보링 바 삽입에 의한 진동측정 (The Vibration Measurement of Boring Process by Using the Optical Fiber Sensor at inside of Boring Bar)

  • 송두상;홍준희;곽양양
    • 한국정밀공학회지
    • /
    • 제28권6호
    • /
    • pp.709-715
    • /
    • 2011
  • Chattering in cutting operations are usually a cumbersome part of the manufacturing process in mechanical. Particular, machining performance such as that of the boring process is limited by cutting condition at the movable components. Among various sources of chatter vibration, detrimental point in cutting condition is found a mechanical condition on overhang. It limits cutting speed, depth, surface roughness and tool wear failure as result because the all properties are varying with the metal removal process. In this case, we have to observe the resonance frequencies of a boring bar for continuous cutting. In the established research, boring bar vibration of cutting system has been measured with the aid of accelerometer. However, the inherent parameters of internal turning operations are severely limit for the real time monitoring on accelerometers. At this point, this paper is proposed other method for real time monitoring during continuous cutting with optical fiber at the inside of boring bar. This method has been used a plastic fiber in the special jig on boring bar by based on experimental modal analysis. In this study, improvement of monitoring system on continuous internal cutting was attempted using optical fiber sensor of inside type because usually chattering is investigated experimentally measuring the variation in chip thickness. It is demonstrated that the optical fiber sensor is possibility to measure of chattering with real time in boring process.

연속섬유강화 플라스틱 복합재의 압축성형에 있어서 확대/축소 점도비를 고려한 유동해석 (Flow Analysis with Ratio of Expansional /Contractional Viscosity during Compression Molding of Continuous Fiber-Reinforced Polymeric Composites)

  • 김형철;채경철;조선형;김이곤
    • 대한기계학회논문집A
    • /
    • 제24권3호
    • /
    • pp.581-592
    • /
    • 2000
  • To obtain an excellent product and decide on optimum molding conditions, it is important to establish the relationship between molding conditions and viscosity. The composites is treated as a pseudoplastic fluid, and the expansional/contractional viscosity of the fiber-reinforced polymeric composites is measured using the parallel plastometer, and the model for flow state has been simulated with the viscosity. The effects of expansional slip parameter $\alpha_{e}$, and expansional/contractional viscosity ratio ${\mu}_{\gamma}$, on the mold filling parameters are also discussed.