DOI QR코드

DOI QR Code

Effects of Fiber Arrangements on Stress Distributions over the Transverse Cross Section of Unidirectionally Continuous Fiber-reinforced Composites

단방향 연속 섬유 복합재 횡단면에서 섬유 배열에 따른 응력 분포 변화

  • Choi, Soohoon (School of Mechanical, Aerospace and Nuclear Engineering, Ulsan National Institute of Science and Technology) ;
  • Ji, Wooseok (School of Mechanical, Aerospace and Nuclear Engineering, Ulsan National Institute of Science and Technology)
  • Received : 2019.09.27
  • Accepted : 2020.02.28
  • Published : 2020.02.29

Abstract

Stress distributions dependent on fiber arrangements are studied using the two-dimensional representative volume element (RVE) model for uni-directionally continuous fiber-reinforced composites subjected to transverse tensile loading. It is easily expected that the stresses around the fibers are concentrated mainly due to the stiffness mismatch between the fiber and matrix materials. In this presentation, it is shown that the stresses are not always increased although the distance between two fibers is shortened. The 2D RVE models, originally having a regular hexagonal fiber array, is utilized to study the effect of the fiber locations on the stress distributions. As the central fiber is relocated, the stress distributions around the fiber are obtained through finite element analysis. It is found that the stresses around the fiber are strongly dependent on the fiber distance as well as the angle between the loading direction and the line connecting two fibers.

단방향 연속 섬유 강화 복합소재에 대하여 섬유 배열에 따른 응력 분포 양상을 연구하기 위해 단면 형상을 대표하는 체적 요소를 생성하였다. 대표 체적 요소에 횡방향 하중을 가하였을 때, 섬유와 기지재 강성의 차이로 인해 섬유 둘레에서 응력 집중 현상이 발생하며, 섬유 간 좁은 간격 때문에 집중된 응력이 중첩되며 섬유 주변에서 높은 응력이 구해질 것이라 쉽게 예측할 수 있다. 본 연구에서는 섬유 둘레 응력 증감이 단순히 섬유 간 간격 뿐 아니라 섬유의 상대적 위치가 하중 방향과 이루는 각도에 의해서도 결정됨을 보여준다. 정규 육각 구조를 가지는 대표 체적 요소의 중앙에 위치한 섬유를 다양한 방향으로 이동시키며 횡방향 하중을 가하여, 섬유 주변 응력이 증가하거나 감소하는 양상을 유한요소해석 기법을 이용해 측정하였다. 섬유 간 거리가 최소이면서 두 섬유의 중심을 잇는 선분의 방향이 하중 방향과 일치할 때 응력이 최대로 증가하였으며, 섬유 간 거리가 최소라 하더라도 하중 방향에 수직일 때 최대 응력은 오히려 감소한다는 것을 보여준다.

Keywords

References

  1. Ng, W.H., Salvi, A.G., and Waas, A.M., "Characterization of the in-situ Non-linear Shear Response of Laminated Fiber-reinforced Composites," Composites Science and Technology, Vol. 70, No. 7, 2010, pp. 1126-1134. https://doi.org/10.1016/j.compscitech.2010.02.024
  2. Yang, S., Tewari, A., and Gokhale, A.M., "Modeling of Nonuniform Spatial Arrangement of Fibers in a Ceramic Matrix Composite," Acta Materialia, Vol. 45, No. 7, 1997, pp. 3059-3069. https://doi.org/10.1016/S1359-6454(96)00394-1
  3. Melro, A.R., Camanho, P.P., and Pinho, S.T., "Generation of Random Distribution of Fibres in Long-fibre Reinforced Composites", Composite Science and Technology, Vol. 68, No. 9, 2008, pp. 2092-2102. https://doi.org/10.1016/j.compscitech.2008.03.013
  4. Yang, L., Yan, Y., Ran, Z., and Liu, Y., "A New Method for Generating Random Fibre Distributions for Fibre Reinforced Composites", Composite Science and Technology, Vol. 76, 2013, pp. 14-20. https://doi.org/10.1016/j.compscitech.2012.12.001
  5. Pan, Y., Iorga, L., and Pelegri, A.A., "Analysis of 3D Random Chopped Fiber Reinforced Composites Using FEM and Random Sequential Adsorption," Computational Material Science, Vol. 43, 2008, pp. 450-461. https://doi.org/10.1016/j.commatsci.2007.12.016
  6. Tian, W., Qi, L., Zhou, J., Liang, J., and Ma, Y., "Representative Volume Element for Composites Reinforced by Spatially Randomly Distributed Discontinuous Fibers and Its Applications," Composite Structures, Vol. 131, 2015, pp. 366-373. https://doi.org/10.1016/j.compstruct.2015.05.014
  7. Vaughan, T.J., and McCarthy, C.T., "A Combined Experimental-numerical Approach for Generating Statistically Equivalent Fibre Distributions for High Strength Laminated Composite Materials", Composites Science and Technology, Vol. 70, No. 2, 2010, pp. 291-297. https://doi.org/10.1016/j.compscitech.2009.10.020
  8. Ismail, Y., Yang, D., and Ye, J., "Discrete Element Method for Generating Random Fibre Distributions in Micromechanical Models of Fibre Reinforced Composite Laminates," Composites Part B, Vol. 90, 2016, pp. 485-492. https://doi.org/10.1016/j.compositesb.2016.01.037
  9. Weng, J., Wen, W., Cui, H., and Chen, B., "Micromechanical Analysis of Composites with Fibers Distributed Randomly over the Transverse Cross-section," Acta Astronautica, Vol. 147, 2018, pp. 133-140. https://doi.org/10.1016/j.actaastro.2018.03.056
  10. Choi, Y., and Woo, K., "Crimp Angle Dependence of Effective Properties for 3-D Weave Composite," Composites Research, Vol. 29, No. 1, 2016, pp. 33-39. https://doi.org/10.7234/composres.2016.29.1.033
  11. Pyrz R., "Quantitative Description of the Microstructure of Composites. Part I: Morphology of Unidirectional Composite Systems," Composite Science and Technology, Vol. 50, No. 2, 1994, pp. 197-208. https://doi.org/10.1016/0266-3538(94)90141-4
  12. Trias, D., Costa, J., Mayugo, J.A., and Hurtado, J.E., "Random Models Versus Periodic Models for Fibre Reinforced Composites", Computational Materials Science, Vol. 38, No. 2, 2006, pp. 316-324. https://doi.org/10.1016/j.commatsci.2006.03.005
  13. Bouaoune, L., Brunet, Y., El Moumen, A., Kanit, T., and Mazouz, H., "Random Versus Periodic Microstructures for Elasticity of Fibers Reinforced Composites," Composites Part B, Vol. 103, 2016, pp. 68-73. https://doi.org/10.1016/j.compositesb.2016.08.026
  14. Choi, K.H, Hwang, Y.T., Kim, H.J., and Kim, H.S., "Development of Modeling Technique and Material Prediction Method Considering Structural Characteristics of Wowen Composites," Composites Research, Vol. 32, No. 5, 2019, pp. 206-210. https://doi.org/10.7234/composres.2019.32.5.206
  15. Yang, D.G., and Shin, E.S., "Micromechanical Computational Analysis for the Prediction of Failure Strength of Porous Composites," Composites Research, Vol. 29, No. 2, 2016, pp. 66-72. https://doi.org/10.7234/composres.2016.29.2.066
  16. Park, K.J., Shin, S., and Yun, G., "Development of the Big-size Statistical Volume Elements (BSVEs) Model for Fiber Reinforced Composite Based on the Mesh Cutting Technique," Composites Research, Vol. 31, No. 4, 2018, pp. 251-259.
  17. Park, S., Kim, D., Jeong, G., Lim, J., and Kim, S., "Prediction and Calibration of Transverse Mechanical Properties of Unidirectional Composites with Random Fiber Arrangement Considering Interphase Effect," Composites Research, Vol. 32, No. 5, 2019, pp. 270-278. https://doi.org/10.7234/composres.2019.32.5.270
  18. Soden, P.D., Hinton, M.J. and Kaddour, A.S., "Lamina Properties, Lay-up Configurations and Loading Conditions for a Range of Fibre-reinforced Composite Laminates," Composites Science and Technology, Vol. 58, 1998, pp. 1011-1022. https://doi.org/10.1016/S0266-3538(98)00078-5
  19. Fiedler, B., Hojo, M., Ochiai, S., Schulte, K., and Ando, M., "Failure Behaviour of an Epoxy Matrix under Different Kinds of Static Loading," Composites Science and Technology, Vol. 61, 2001, pp. 1615-1624. https://doi.org/10.1016/S0266-3538(01)00057-4
  20. Melro, A.R., Camanho, P.P., Andrade Pires, F.R., and Pinho, S.T., "Micromechanical Analysis of Polymer Composites Reinforced by Unidirectional Fibres: Part II - Micromechanical Analyses," International Journal of Solids and Structures, Vol. 50, 2013, pp. 1906-1915. https://doi.org/10.1016/j.ijsolstr.2013.02.007
  21. Nguyen, V.P., Lloberas-Valls, O., Stroeven, M., and Slury, L.J., "On the Existence of Representative Volumes for Softening Quasi-brittle Materials: a Failure Zone Averaging Scheme," Computer Methods in Applied Mechanics and Engineering, Vol. 199, 2010, pp. 3028-3038. https://doi.org/10.1016/j.cma.2010.06.018
  22. Kasayapanand, N., "Exact Solutions of Double Filled Hole of an Infinite Plate," Journal of Mechanics of Materials and Structures, Vol. 3, No. 2, 2008, pp. 365-373. https://doi.org/10.2140/jomms.2008.3.365
  23. Tabiai, I., Delorme, R., Therriault, D., and Levesque, M., "In situ Full Field Measurements during Inter-facial Debonding in Single Fiber Composite under Transverse Load," Experimental Mechanics, Vol. 58, 2018, pp. 1451-1467. https://doi.org/10.1007/s11340-018-0429-9
  24. Talreja, R., "Transverse Cracking and Stiffness Reduction in Composite Lamiantes," Journal of Composite Materials, Vol. 19, No. 4, 1985, pp. 355-375. https://doi.org/10.1177/002199838501900404
  25. Nairn, J.A., "Matrix Microcracking in Composites," In the Book of Comprehensive Composite Materials, 2000, pp. 403-432.