• Title/Summary/Keyword: continuous distribution function

Search Result 178, Processing Time 0.027 seconds

ON CHARACTERIZATIONS OF THE CONTINUOUS DISTRIBUTIONS BY INDEPENDENCE PROPERTY OF RECORD VALUES

  • JIN, HYUN-WOO;LEE, MIN-YOUNG
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.5_6
    • /
    • pp.651-657
    • /
    • 2017
  • A sequence {$X_n,\;n{\geq}1$} of independent and identically distributed random variables with absolutely continuous (with respect to Lebesque measure) cumulative distribution function F(x) is considered. We obtain two characterizations of a family of continuous probability distribution by independence property of record values.

ON CHARACTERIZATIONS OF PARETO AND WEIBULL DISTRIBUTIONS BY CONSIDERING CONDITIONAL EXPECTATIONS OF UPPER RECORD VALUES

  • Jin, Hyun-Woo;Lee, Min-Young
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.243-247
    • /
    • 2014
  • Let {$X_n$, $n{\geq}1$} be a sequence of i.i.d. random variables with absolutely continuous cumulative distribution function(cdf) F(x) and the corresponding probability density function(pdf) f(x). In this paper, we give characterizations of Pareto and Weibull distribution by considering conditional expectations of record values.

CHARACTERIZATIONS OF THE LOMAX, EXPONENTIAL AND PARETO DISTRIBUTIONS BY CONDITIONAL EXPECTATIONS OF RECORD VALUES

  • Lee, Min-Young;Lim, Eun-Hyuk
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.149-153
    • /
    • 2009
  • Let {$X_{n},\;n\;\geq\;1$} be a sequence of independent and identically distributed random variables with absolutely continuous cumulative distribution function (cdf) F(x) and probability density function (pdf) f(x). Suppose $X_{U(m)},\;m = 1,\;2,\;{\cdots}$ be the upper record values of {$X_{n},\;n\;\geq\;1$}. It is shown that the linearity of the conditional expectation of $X_{U(n+2)}$ given $X_{U(n)}$ characterizes the lomax, exponential and pareto distributions.

  • PDF

Stationary distribution of the surplus process in a risk model with a continuous type investment

  • Cho, Yang Hyeon;Choi, Seung Kyoung;Lee, Eui Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.5
    • /
    • pp.423-432
    • /
    • 2016
  • In this paper, we stochastically analyze the continuous time surplus process in a risk model which involves a continuous type investment. It is assumed that the investment of the surplus to other business is continuously made at a constant rate, while the surplus process stays over a given sufficient level. We obtain the stationary distribution of the surplus level and/or its moment generating function by forming martingales from the surplus process and applying the optional sampling theorem to the martingales and/or by establishing and solving an integro-differential equation for the distribution function of the surplus level.

A Study on Teaching Continuous Probability Distribution in Terms of Mathematical Connection (수학적 연결성을 고려한 연속확률분포단원의 지도방안 연구)

  • Hwang, Suk-Geun;Yoon, Jeong-Ho
    • School Mathematics
    • /
    • v.13 no.3
    • /
    • pp.423-446
    • /
    • 2011
  • In school mathematics, concepts of definite integral and integration by substitution have mathematical connection with introduction of probability density function, expectation of continuous random variable, and standardization of normal distribution. However, we have difficulty in finding mathematical connection between integration and continuous probability distribution in the curriculum manual, 13 kinds of 'Basic Calculus and Statistics' and 10 kinds of 'Integration and Statistics' authorized textbooks, and activity books applied to the revised curriculum. Therefore, the purpose of this study is to provide a teaching method connected with mathematical concepts of integral in regard to three concepts in continuous probability distribution chapter-introduction of probability density function, expectation of continuous random variable, and standardization of normal distribution. To find mathematical connection between these three concepts and integral, we analyze a survey of student, the revised curriculum manual, authorized textbooks, and activity books as well as 13 domestic and 22 international statistics (or probability) books. Developed teaching method was applied to actual classes after discussion with a professional group. Through these steps, we propose the result by making suggestions to revise curriculum or change the contents of textbook.

  • PDF

Prediction of New Customer's Degree of Loyalty of Internet Shopping Mall Using Continuous Conditional Random Field (Continuous Conditional Random Field에 의한 인터넷 쇼핑몰 신규 고객등급 예측)

  • Ahn, Gil Seung;Hur, Sun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.1
    • /
    • pp.10-16
    • /
    • 2015
  • In this study, we suggest a method to predict probability distribution of a new customer's degree of loyalty using C-CRF that reflects the RFM score and similarity to the neighbors of the customer. An RFM score prediction model is introduced to construct the first feature function of C-CRF. Integrating demographical similarity, purchasing characteristic similarity and purchase history similarity, we make a unified similarity variable to configure the second feature function of C-CRF. Then parameters of each feature function are estimated and we train our C-CRF model by training data set and suggest a probabilistic distribution to estimate a new customer's degree of loyalty. An example is provided to illustrate our model.

Consideration of Image Quality of Dithered Picture by Constrained Average Method Using Various Probability Distribution Models

  • Sato, Mitsuhiro;Hasegawa, Madoka;Kato, Shigeo
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1495-1498
    • /
    • 2002
  • The constrained average method is one of dither methods which combines edge emphasis and grayscale rendition to provide legibility of textual region and proper quality of continuous tone region. How-ever, image quality of continuous tone region is insufficient compared to other dither methods, such as ordered dither methods or the error diffusion method. The constrained average method uses a uniform distribution function to decide number of lit pixels related to the average intensity in a picture area. However, actual distribution of continuous tone region is closer to the Laplacian distribution or triangle distribution. In this paper, we introduce various probability distributions and the actual luminance distribution to decide the threshold value of the constrained average method in order to improve image quality of dithered image.

  • PDF

THE CONTINUOUS DENSITY FUNCTION OF THE LIMITING SPECTRAL DISTRIBUTION

  • Choi, Sang-Il
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.515-521
    • /
    • 2010
  • In multivariate analysis, the inversion formula of the Stieltjes transform is used to find the density of a spectral distribution of random matrices of sample covariance type. Let $B_n\;=\;\frac{1}{N}Y_nY_n^TT_n$ where $Y_n\;=\;[Y_{ij}]_{n\;{\times}\;N}$ is with independent, identically distributed entries and $T_n$ is an $n\;{\times}\;n$ symmetric non-negative definite random matrix independent of the $Y_{ij}$'s. In the present paper, using the inversion formula of the Stieltjes transform, we will find that the limiting distribution of $B_n$ has a continuous density function away from zero.

A CHARACTERIZATION OF GAMMA DISTRIBUTION BY INDEPENDENT PROPERTY

  • Lee, Min-Young;Lim, Eun-Hyuk
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • Let {$X_n,\;n{\geq}1}$ be a sequence of independent identically distributed(i.i.d.) sequence of positive random variables with common absolutely continuous distribution function(cdf) F(x) and probability density function(pdf) f(x) and $E(X^2)<{\infty}$. The random variables $\frac{X_i{\cdot}X_j}{(\Sigma^n_{k=1}X_k)^{2}}$ and $\Sigma^n_{k=1}X_k$ are independent for $1{\leq}i if and only if {$X_n,\;n{\geq}1}$ have gamma distribution.

  • PDF

ON CHARACTERIZATIONS OF THE NORMAL DISTRIBUTION BY INDEPENDENCE PROPERTY

  • LEE, MIN-YOUNG
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.3_4
    • /
    • pp.261-265
    • /
    • 2017
  • Let X and Y be independent identically distributed nondegenerate random variables with common absolutely continuous probability distribution function F(x) and the corresponding probability density function f(x) and $E(X^2)$<${\infty}$. Put Z = max(X, Y) and W = min(X, Y). In this paper, it is proved that Z - W and Z + W or$(X-Y)^2$ and X + Y are independent if and only if X and Y have normal distribution.