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THE CONTINUOUS DENSITY FUNCTION OF
THE LIMITING SPECTRAL DISTRIBUTION

SANG-IL CHo1

ABSTRACT. In multivariate analysis, the inversion formula of the Stieltjes trans-
form is used to find the density of a spectral distribution of random matrices
of sample covariance type. Let B, = %YnYnT Ty where Yy, = [Yij]lnxn is with
independent, identically distributed entries and T, is an n X n symmetric non-
negative definite random matrix independent of the Y;;’s. In the present paper,
using the inversion formula of the Stieltjes transform, we will find that the limiting
distribution of B, has a continuous density function away from zero.
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1. Introduction and preliminaries

Let M be an m x m random matrix with real eigenvalues {A1, Az, ..., An}.
Then the spectral distribution function of M is the distribution function F*(z)

1
with a jump of e at each eigenvalue defined by

1m
V R FN[ = — l—ooz Ai
zcR, (z) m;< ()

where 15 is the indicator function of the set S.
We have a limit theorem found in [8].

Theorem 1 [8]. Let {Yi;}i;j>1 be independent, identically distributed, real-
valued random variables with E|Y1; — EY11|? = 1. For each m in N, the set
of positive integers, let Yo, = [Yi;jlmxn, where n=n(m) and m/n — ¢ > 0 as
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m — 400, and let T, be an m x m symmetric nonnegative definite random ma-
triz independent of the Y;;’s for which there exists a sequence of positive numbers
{ur}tr>1 such that for each k € N,

+oo
1
/ b dFTm (2) = = trTX — u, almost surely, as m — +o00
0 m

where tr A means the trace of the matriz A. and the uy’s satisfy Carleman’s
sufficiency condition,
4
Dz = +oo,

k>1
for the existence and the uniqueness of the distribution function H having mo-
ments {pxtr>1, €., /xde(x) = uk, fork=1,2,3,....

1
Let M,, = EYmYmTTm. Then, almost surely, {FMn},,~; converges weakly to

a nonrandom distribution function Fy having moments

_— k—w my Moy
Vk €N, Vg = Z Zml'mg w!w!ul T

w=1

where the inner sum eztends over all w- tuples of nonnegative integers (m1, ...

My ) such that Zm] =k—w+1 and Z]mj = k. Moreover, these moments

Jj=1 Jj=1
untquely determine Fy.

Under the same hypothesis of Theorem 1 and for ¢, H and Fy defined in
Theorem 1, we have the following facts from [5],

(i) c and Fp uniquely determine H.

(ii) Almost surely, F7m converges weakly to H as m — oo.

(iii) Fp converges weakly to H as ¢ — 0.
Moreover, we have the continuity of Fy, from [5],

Theorem 2 [5]. The limiting distribution function Fy in Theorem 1 is contin-
uous on Ry, the set of positive real numbers. Moreover, if H places no mass at
0, then, almost surely, {FM'"}mzl converges to Fy uniformly in R.

1
In 2], B, = —Yn:f T Y is studied instead of M,,, and T,, is an arbitrary
mn
diagonal matrix, i.e., H is arbitrary.
Let F denote the limiting spectral distribution function of B,,. Then

Ve € R, F(z) = (1 — ¢)lp,00)(x) + cFo(z). (1.1)
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Let Cr = {z € C:Im(z) > O}. For z € C, let m(z) be the Stieltjes

transform of F', i.e.,
m(z) = / aF)
A—z

In [2], it is shown that, for each z € C;, m = m(z) is the unique solution for

m € C, to the equation
N / AHA)\
B 1+Am '

Therefore, on C, m(z) has an inverse, given by

1 / AH())

z(m):—a +c T v for m € m(C,).

We will have the continuous density of F in (1.1).

Theorem 3. For F defined as above, F has a continuous density f away from
0 and, for all x # 0,

(&) = lim — Im(m(s + i),

2. Preliminary results
For (1.1), we need the following theorem.
Theorem 2.1. If A is an n x m matriz and B is an m X n matriz, then
:l?mPAB = S!ZnPBA

where Py is the characteristic polynomial of the matriz M.

Proof. Let
zl, A (I 0
C—(B Im) andD-(_B xIm>

be two (m +n) x (m + n) matrices, where I} is the k¥ x k identity matrix. Then

_(zl,—AB zA S zl, A
CD_( 0 xfm)a“dDC“<o :cIm—BA>'

Therefore, from |CD| = |DC|, we have

™ Pag = \zly||zl, — AB|
~|cD|
=|DC|
= |zl ||zl — BA| = 2" Pga.
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For B,, and M,, in Chapter 1, we have ™ Pg_ = x" P)y,,. Thus the difference
between the eigenvalues of B,, and the eigenvalues of M,, are |n —m| zeros, that
is, when m < n, the eigenvalues of B,, has extra n — m zeros, and, when m > n,
the eigenvalues of M,,, has extra m — n zeros. Thus we have

FBr(z) = TFM'”(I), ifx<0
n

and
FBr(z) =22 DpMagy)  ifz>0.
n n

That is,
Bup)=(1-" ™ M
Fon () = (1 n> 1{0,00) () + - FMm(z).
Therefore we have (1.1).
Now let G(-) be an arbitrary distribution function and let S(-) be the Stieltjes

transform of G. Let S¢ be the support of G.
We can calculate G from the Inversion Formula,

G(z2) — G(z1) = lim l/ Im(S(z + iy))dz
yl0 T Jay

where z; and z2 are continuity points of .
Next theorem gives us the derivative of G.

Theorem 2.2. Let zo € R. If ll%m Im(S(z)) exists, call it Im(S(x0)), then
z€D—>zxg
1
G is differentiable at zo, and its derivative is ;Im(S(wo)).

Proof. Given ¢ > 0, let § > 0 be st. |z — x0] < 6, 0 < y < § implies
1 .
= Im(S(z + iy)) — Im(S(z0))| < % Since all continuity points are dense in
vy

R, 3z, z2, continuity points s.t. 1 < z2 and |z; — zo| < 4, ¢ = 1,2, and, from
the Inversion Formula, we can choose y with 0 < y < § so that

T2

‘G(Ivz) -G - = [ (st + w)is

x1

< %(l‘g - 1‘1).

For any z € [z1,z2], we have |z — zo| < §. Thus

lG(xg) ~ G(z1) <

T2 —T1

- %Im(S(xo))

T2

Gex) ~ Gl - 1 [ (S + w)ds

1

1

o — 1

1 *2
e
o — T z1

% (Im(S(z + iy)) — Im(S(z0)))| dz < €.
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Therefore, for all {z,}, a sequence of continuity points with z,, — zg as
n — 00,
. G(xn) — Gz 1
lim Glzn) = Glam) = =Im(S(zq)),
n,M~>00 Tpn — Tm m
and, therefore {G(z,)} is Cauchy. Thus, since all continuity points are dense in
R, liTm G(z) = 1ilm G(x), and, therefore G is continuous at zo.
zTzg zlzo

Therefore, by choosing the sequence {x1, zo, z2, o, . . . }, we have

lim G(xn) ~ G(zo)

n—0oo Tp — X0

- %Im(S(zo)). (2.1)

Now, for any z € R with = # o, G(z) can be made arbitrarily close to

G(z), for some continuty point z.,, by making z., suitably close to . Then,

G c - 0 . . G - G 0
M, for z.p # xo, can be made arbitrarily close to M,
Tep — Xo r—Xo

in the following way:
For any ¢ > 0, if > xg, then choose 1:2;7, T, continuity points, s.t. zo <z, <
z < 2d,, (1—€)(z —20) <2 — 20, and zf, — 79 < (14 €)(x — 20), and, hence

G(rg,) — G(zo) < G(z) — G{(xo)

1—
( 2 Tep — To - )
Gr)-G
< (1 +9ZUa) 2 Gloo).
Tep — L9

and, if z < zg, then choose a:jp, Ty, continuity points s.t. zo > z;, > & > a:j;,

(I -€)(zwo— ) < 0 — 2, and ¢ — z}, < (xo — x)(1 + ¢€), and, hence

Glay) ~Glag,) _ Glay) — Cla)

1 —
( 9 To — Tep - To—T
G - Gzt
<(1+ e)—i(%) JEa: 2
o — Tep

Now, for any {z,} with z,, # zg — xy, for each n, as above, we can choose

{xf(;z)—} and {JJEQH} s.t.
0_1>Gw$v—cum<amm—auw
n o™~z T rp— o

. (1 N 1) Gzl — Gza)

o

n — z0
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From (2.1), as n — oo, since

()Y _
(1—1) ey )= GGo) _ Lin(siay)

(n)—
n Ty — o 7r

and

2N~ Qe
(1+5) P =2 Lo,

n)+
n .Tgp) — Zg s

we must have

G(zn) — G(xo)

— lIm(,S’(sn:o)).
Ty — To T

This complete the proof.

Theorem 2.3. Let X be an open and bounded subset of R", let Y be an open
and bounded subset of R™, and let f : X — Y be a continuous function. If,
VZ € Bd(X)!, limgex—z f(x) exists, call it f(Z), then f can be extended to a
continuous map on X = X U Bd(X).

Proof. Let zo € Bd(X). Given € > 0, there exists § > 0 s.t.
€
lz = 2ol <& = [If(@) = f(z)ll < 5.

Therefore, Vi € Bd(X) with ||# — || < 6, since E1;(m _f(z) exists,

37 € X s.t. |2 — zo| < 6 and ||f(2) — £(3)|| < %

Therefore

1£(2) = f(=zo)ll < [1£(2) = F@) + 1 £ (o) — F(@)]| <e.

Therefore, for all z € X, |lz — zol]| <6 = ||f(z) — f(zo)| < €. Therefore, f is
continuous forallz € X. O

Proof of the Theorem 3.
For xgy # 0, we have the existence of . éim m(z) in [4].
z + =*Zg

From theorem 2.2, for all z # 0, the density of F is given by
1
= lim ~I ).
£(&) = lim ~Tm(m(o + iy))

From theorem 2.3, f is continuous, for all z # 0.
This complete the proof of the Theorem 3.

1The set of the boundary points of X.
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