THE CONTINUOUS DENSITY FUNCTION OF THE LIMITING SPECTRAL DISTRIBUTION

Sang-Il Choi

ABSTRACT. In multivariate analysis, the inversion formula of the Stieltjes transform is used to find the density of a spectral distribution of random matrices of sample covariance type. Let $B_n = \frac{1}{N} Y_n Y_n^T T_n$ where $Y_n = [Y_{ij}]_{n \times N}$ is with independent, identically distributed entries and T_n is an $n \times n$ symmetric nonnegative definite random matrix independent of the Y_{ij} 's. In the present paper, using the inversion formula of the Stieltjes transform, we will find that the limiting distribution of B_n has a continuous density function away from zero.

AMS Mathematics Subject Classification : 60E99, 26A46

Key words and phrases : Eigenvalues of random matrices, spectral distribution, Stieltjes transform

1. Introduction and preliminaries

Let M be an $m \times m$ random matrix with real eigenvalues $\{\Lambda_1, \Lambda_2, \dots, \Lambda_m\}$. Then the spectral distribution function of M is the distribution function $F^M(x)$ with a jump of $\frac{1}{m}$ at each eigenvalue defined by

$$\forall x \in \mathbb{R}, \qquad F^M(x) = rac{1}{m} \sum_{i=1}^m \mathbb{1}_{(-\infty, x]}(\Lambda_i)$$

where 1_S is the indicator function of the set S.

We have a limit theorem found in [8].

Theorem 1 [8]. Let $\{Y_{ij}\}_{i,j\geq 1}$ be independent, identically distributed, realvalued random variables with $E|Y_{11} - EY_{11}|^2 = 1$. For each m in \mathbb{N} , the set of positive integers, let $Y_m = [Y_{ij}]_{m \times n}$, where n=n(m) and $m/n \to c > 0$ as

Received July 10, 2009. Accepted November 2, 2009.

^{© 2010} Korean SIGCAM and KSCAM

 $m \to +\infty$, and let T_m be an $m \times m$ symmetric nonnegative definite random matrix independent of the Y_{ij} 's for which there exists a sequence of positive numbers $\{\mu_k\}_{k\geq 1}$ such that for each $k \in \mathbb{N}$,

$$\int_0^{+\infty} x^k dF^{T_m}(x) = \frac{1}{m} \operatorname{tr} T_m^k \to \mu_k, \operatorname{almost \ surely, \ as \ } m \to +\infty$$

where trA means the trace of the matrix A. and the μ_k 's satisfy Carleman's sufficiency condition,

$$\sum_{k\geq 1} \mu_{2k}^{-\frac{1}{2k}} = +\infty,$$

for the existence and the uniqueness of the distribution function H having moments $\{\mu_k\}_{k\geq 1}$, i.e., $\int x^k dH(x) = \mu_k$, for $k = 1, 2, 3, \ldots$

Let $M_m = \frac{1}{n} Y_m Y_m^T T_m$. Then, almost surely, $\{F^{M_m}\}_{m\geq 1}$ converges weakly to a nonrandom distribution function F_0 having moments

$$\forall k \in \mathbb{N}, \qquad \nu_k = \sum_{w=1}^k c^{k-w} \sum \frac{k!}{m_1! m_2! \dots m_w! w!} \mu_1^{m_1} \dots \mu_w^{m_w}$$

where the inner sum extends over all w-tuples of nonnegative integers (m_1, \ldots, m_w) such that $\sum_{j=1}^w m_j = k - w + 1$ and $\sum_{j=1}^w j m_j = k$. Moreover, these moments uniquely determine F_0 .

Under the same hypothesis of Theorem 1 and for c, H and F_0 defined in Theorem 1, we have the following facts from [5],

- (i) c and F_0 uniquely determine H.
- (ii) Almost surely, F^{T_m} converges weakly to H as $m \to \infty$.
- (iii) F_0 converges weakly to H as $c \to 0$.

Moreover, we have the continuity of F_0 , from [5],

Theorem 2 [5]. The limiting distribution function F_0 in Theorem 1 is continuous on \mathbb{R}_+ , the set of positive real numbers. Moreover, if H places no mass at 0, then, almost surely, $\{F^{M_m}\}_{m\geq 1}$ converges to F_0 uniformly in \mathbb{R} .

In [2], $B_n \equiv \frac{1}{n} Y_m^T T_m Y_m$ is studied instead of M_m , and T_m is an arbitrary diagonal matrix, i.e., H is arbitrary.

Let F denote the limiting spectral distribution function of B_n . Then

$$\forall x \in \mathbb{R}, \qquad F(x) = (1 - c)1_{[0,\infty)}(x) + cF_0(x). \tag{1.1}$$

Let $\mathbb{C}_+ = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$. For $z \in C_+$, let m(z) be the Stieltjes transform of F, i.e.,

$$m(z) = \int \frac{dF(\lambda)}{\lambda - z}.$$

In [2], it is shown that, for each $z \in \mathbb{C}_+$, m = m(z) is the unique solution for $m \in \mathbb{C}_+$ to the equation

$$m = -\left(z - c\int \frac{\lambda dH(\lambda)}{1 + \lambda m}\right)^{-1}.$$

Therefore, on \mathbb{C}_+ , m(z) has an inverse, given by

$$z(m) = -\frac{1}{m} + c \int \frac{\lambda dH(\lambda)}{1 + \lambda m}$$
 for $m \in m(\mathbb{C}_+)$.

We will have the continuous density of F in (1.1).

Theorem 3. For F defined as above, F has a continuous density f away from 0 and, for all $x \neq 0$,

$$f(x) = \lim_{y \downarrow 0} \frac{1}{\pi} Im(m(x+iy)).$$

2. Preliminary results

For (1.1), we need the following theorem.

Theorem 2.1. If A is an $n \times m$ matrix and B is an $m \times n$ matrix, then

$$x^m P_{AB} = x^n P_{BA}$$

where P_M is the characteristic polynomial of the matrix M.

Proof. Let

$$C = \begin{pmatrix} xI_n & A \\ B & I_m \end{pmatrix} \text{ and } D = \begin{pmatrix} I_n & 0 \\ -B & xI_m \end{pmatrix}$$

be two $(m+n)\times (m+n)$ matrices, where I_k is the $k\times k$ identity matrix. Then

$$CD = \begin{pmatrix} xI_n - AB & xA \\ 0 & xI_m \end{pmatrix}$$
 and $DC = \begin{pmatrix} xI_n & A \\ 0 & xI_m - BA \end{pmatrix}$.

Therefore, from |CD| = |DC|, we have

$$x^{m}P_{AB} = |xI_{m}||xI_{n} - AB|$$

$$= |CD|$$

$$= |DC|$$

$$= |xI_{n}||xI_{m} - BA| = x^{n}P_{BA}.$$

For B_n and M_m in Chapter 1, we have $x^m P_{B_n} = x^n P_{M_m}$. Thus the difference between the eigenvalues of B_n and the eigenvalues of M_m are |n-m| zeros, that is, when m < n, the eigenvalues of B_n has extra n-m zeros, and, when m > n, the eigenvalues of M_m has extra m-n zeros. Thus we have

$$F^{B_n}(x) = \frac{m}{n} F^{M_m}(x), \quad \text{if } x < 0$$

and

$$F^{B_n}(x) = \frac{n-m}{n} + \frac{m}{n} F^{M_m}(x), \quad \text{if } x \ge 0.$$

That is,

$$F^{B_n}(x) = \left(1 - \frac{m}{n}\right) 1_{[0,\infty)}(x) + \frac{m}{n} F^{M_m}(x).$$

Therefore we have (1.1).

Now let $G(\cdot)$ be an arbitrary distribution function and let $S(\cdot)$ be the Stieltjes transform of G. Let S_G be the support of G.

We can calculate G from the Inversion Formula,

$$G(x_2) - G(x_1) = \lim_{y \downarrow 0} \frac{1}{\pi} \int_{x_1}^{x_2} \text{Im}(S(x+iy)) dx$$

where x_1 and x_2 are continuity points of α .

Next theorem gives us the derivative of G.

Theorem 2.2. Let $x_0 \in \mathbb{R}$. If $\lim_{z \in D \to x_0} Im(S(z))$ exists, call it $Im(S(x_0))$, then G is differentiable at x_0 , and its derivative is $\frac{1}{\pi} Im(S(x_0))$.

Proof. Given $\epsilon > 0$, let $\delta > 0$ be s.t. $|x - x_0| < \delta$, $0 < y < \delta$ implies $\frac{1}{\pi}|\mathrm{Im}(S(x+iy)) - \mathrm{Im}(S(x_0))| < \frac{\epsilon}{2}$. Since all continuity points are dense in \mathbb{R} , $\exists x_1, x_2$, continuity points s.t. $x_1 < x_2$ and $|x_i - x_0| < \delta$, i = 1, 2, and, from the Inversion Formula, we can choose y with $0 < y < \delta$ so that

$$\left| G(x_2) - G(x_1) - \frac{1}{\pi} \int_{x_1}^{x_2} \operatorname{Im}(S(x+iy)) dx \right| < \frac{\epsilon}{2} (x_2 - x_1).$$

For any $x \in [x_1, x_2]$, we have $|x - x_0| < \delta$. Thus

$$\left| \frac{G(x_2) - G(x_1)}{x_2 - x_1} - \frac{1}{\pi} \operatorname{Im}(S(x_0)) \right| \le \frac{1}{x_2 - x_1} \left| G(x_2) - G(x_1) - \frac{1}{\pi} \int_{x_1}^{x_2} \operatorname{Im}(S(x + iy)) dx \right| + \frac{1}{x_2 - x_1} \int_{x_1}^{x_2} \left| \frac{1}{\pi} \left(\operatorname{Im}(S(x + iy)) - \operatorname{Im}(S(x_0)) \right) \right| dx < \epsilon.$$

Therefore, for all $\{x_n\}$, a sequence of continuity points with $x_n \to x_0$ as $n \to \infty$,

$$\lim_{n,m \to \infty} \frac{G(x_n) - G(x_m)}{x_n - x_m} = \frac{1}{\pi} \text{Im}(S(x_0)),$$

and, therefore $\{G(x_n)\}$ is Cauchy. Thus, since all continuity points are dense in \mathbb{R} , $\lim_{x \uparrow x_0} G(x) = \lim_{x \mid x_0} G(x)$, and, therefore G is continuous at x_0 .

Therefore, by choosing the sequence $\{x_1, x_0, x_2, x_0, \dots\}$, we have

$$\lim_{n \to \infty} \frac{G(x_n) - G(x_0)}{x_n - x_0} = \frac{1}{\pi} \text{Im}(S(x_0)).$$
 (2.1)

Now, for any $x \in \mathbb{R}$ with $x \neq x_0$, $G(x_{cp})$ can be made arbitrarily close to G(x), for some continuty point x_{cp} , by making x_{cp} suitably close to x. Then, $\frac{G(x_{cp}) - G(x_o)}{x_{cp} - x_0}$, for $x_{cp} \neq x_0$, can be made arbitrarily close to $\frac{G(x) - G(x_o)}{x - x_0}$, in the following way:

For any $\epsilon>0$, if $x>x_0$, then choose $x_{cp}^+,\,x_{cp}^-$, continuity points, s.t. $x_0< x_{cp}^-\le x\le x_{cp}^+,\,(1-\epsilon)(x-x_0)\le x_{cp}^--x_0$, and $x_{cp}^+-x_0\le (1+\epsilon)(x-x_0)$, and, hence

$$(1 - \epsilon) \frac{G(x_{cp}^{-}) - G(x_0)}{x_{cp}^{-} - x_0} \le \frac{G(x) - G(x_0)}{x - x_0}$$
$$\le (1 + \epsilon) \frac{G(x_{cp}^{+}) - G(x_0)}{x_{cp}^{+} - x_0},$$

and, if $x < x_0$, then choose x_{cp}^+ , x_{cp}^- , continuity points s.t. $x_0 > x_{cp}^- \ge x \ge x_{cp}^+$, $(1 - \epsilon)(x_0 - x) \le x_0 - x_{cp}^-$, and $x_0 - x_{cp}^+ \le (x_0 - x)(1 + \epsilon)$, and, hence

$$(1 - \epsilon) \frac{G(x_0) - G(x_{cp}^-)}{x_0 - x_{cp}^-} \le \frac{G(x_0) - G(x)}{x_0 - x}$$
$$\le (1 + \epsilon) \frac{G(x_0) - G(x_{cp}^+)}{x_0 - x_{cp}^+}.$$

Now, for any $\{x_n\}$ with $x_n \neq x_0 \to x_0$, for each n, as above, we can choose $\left\{x_{cp}^{(n)-}\right\}$ and $\left\{x_{cp}^{(n)+}\right\}$ s.t.

$$\left(1 - \frac{1}{n}\right) \frac{G(x_{cp}^{(n)-}) - G(x_0)}{x_{cp}^{(n)-} - x_0} \le \frac{G(x_n) - G(x_0)}{x_n - x_0}
\le \left(1 + \frac{1}{n}\right) \frac{G(x_{cp}^{(n)+}) - G(x_0)}{x_{cp}^{(n)+} - x_0}.$$

From (2.1), as $n \to \infty$, since

$$\left(1 - \frac{1}{n}\right) \frac{G(x_{cp}^{(n)-}) - G(x_0)}{x_{cp}^{(n)-} - x_0} \to \frac{1}{\pi} \operatorname{Im}(S(x_0))$$

and

$$\left(1 + \frac{1}{n}\right) \frac{G(x_{cp}^{(n)+}) - G(x_0)}{x_{cp}^{(n)+} - x_0} \to \frac{1}{\pi} \text{Im}(S(x_0)),$$

we must have

$$\frac{G(x_n) - G(x_0)}{x_n - x_0} \to \frac{1}{\pi} \operatorname{Im}(S(x_0)).$$

This complete the proof.

Theorem 2.3. Let X be an open and bounded subset of \mathbb{R}^n , let Y be an open and bounded subset of \mathbb{R}^m , and let $f: X \to Y$ be a continuous function. If, $\forall \bar{x} \in Bd(X)^1$, $\lim_{x \in X \to \bar{x}} f(x)$ exists, call it $f(\bar{x})$, then f can be extended to a continuous map on $\bar{X} = X \cup Bd(X)$.

Proof. Let $x_0 \in Bd(X)$. Given $\epsilon > 0$, there exists $\delta > 0$ s.t.

$$||x - x_0|| < \delta \implies ||f(x) - f(x_0)|| < \frac{\epsilon}{2}.$$

Therefore, $\forall \hat{x} \in Bd(X)$ with $\|\hat{x} - x_0\| < \delta$, since $\lim_{x \in X \to \hat{x}} f(x)$ exists,

$$\exists \bar{x} \in X \text{ s.t. } \|\bar{x} - x_0\| < \delta \text{ and } \|f(\hat{x}) - f(\bar{x})\| < \frac{\epsilon}{2}.$$

Therefore

$$||f(\hat{x}) - f(x_0)|| \le ||f(\hat{x}) - f(\bar{x})|| + ||f(x_0) - f(\bar{x})|| < \epsilon.$$

Therefore, for all $x \in \bar{X}$, $||x - x_0|| < \delta \implies ||f(x) - f(x_0)|| < \epsilon$. Therefore, f is continuous for all $x \in \bar{X}$. \square

Proof of the Theorem 3.

For $x_0 \neq 0$, we have the existence of $\lim_{z \in \mathbb{C}_+ \to x_0} m(z)$ in [4].

From theorem 2.2, for all $x \neq 0$, the density of F is given by

$$f(x) = \lim_{y \downarrow 0} \frac{1}{\pi} \text{Im}(m(x+iy)).$$

From theorem 2.3, f is continuous, for all $x \neq 0$.

This complete the proof of the Theorem 3.

¹The set of the boundary points of X.

References

- 1 D. Jonsson, Some limit theorems for the eigenvalues of a sample covariance matrix, Journal of Multivariate Analysis 12 (March 1982), 1–38.
- 2 V. A. Marcenko and L. A. Pastur, Distribution of eignvalues for some sets of random matrices, Mathematics of the USSR-Sbornik 1, no. 4 (1967), 457-483.
- 3 J. W. Silverstein, The limiting eigenvalue distribution of a multivariate F matrix, SIAM Journal on Applied Mathematics 16, no. 3 (May 1985), 641-646.
- 4 J. W. Silverstein and S. I. Choi, Analysis of limiting spectral distribution function of large dimensional random matrices, Journal of Multivariate Analysis 54, no. 2 (August 1995), 295–309.
- 5 J. W. Silverstein and P. L. Combettes, Spectral theory of large dimensional random matrices applied to signal detection, Tech. rep , Dept. Mathematics, North Carolina State Univ., Raleigh, NC (1990).
- 6 J. W. Silverstein and P. L. Combettes, Signal detection via spectral theory of large dimensional random matrices, IEEE Trans. Signal Processing 40, no. 3 (August 1992), 2100-2105.
- 7 K. W. Wachter, The strong limits of random matrix spectra for sample matrices of independent elements, Annals of Probability 6, no. 1 (April 1985), 1-18.
- 8 Y. Q. Yin, Limiting spectral distribution for a class of random matrices, Journal of Multivariate Analysis 20, no. 1 (October 1986), 50-68.

Sang-Il Choi,

Department of Mathematics, Hanseo University, Seosan, Chungnam 356-820, Korea e-mail: schoi@hanseo.ac.kr