• 제목/요약/키워드: continuity of boundary

검색결과 243건 처리시간 0.026초

Blending Surface Modelling Using Sixth Order PDEs

  • You, L.H.;Zhang, Jian J.
    • International Journal of CAD/CAM
    • /
    • 제6권1호
    • /
    • pp.157-166
    • /
    • 2006
  • In order to model blending surfaces with curvature continuity, in this paper we apply sixth order partial differential equations (PDEs), which are solved with a composite power series based method. The proposed composite power series based approach meets boundary conditions exactly, minimises the errors of the PDEs, and creates almost as accurate blending surfaces as those from the closed form solution that is the most accurate but achievable only for some simple blending problems. Since only a few unknown constants are involved, the proposed method is comparable with the closed form solution in terms of computational efficiency. Moreover, it can be used to construct 3- or 4-sided patches through the satisfaction of continuities along all edges of the patches. Therefore, the developed method is simpler and more efficient than numerical methods, more powerful than the analytical methods, and can be implemented into an effective tool for the generation and manipulation of complex free-form surfaces.

Delaunay 삼각화 기법을 활용한 다중-블록 정렬 격자의 자동 생성 기법 (Automatic Multi-Block Grid Generation Technique Based on Delaunay Triangulation)

  • 김병수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 추계 학술대회논문집
    • /
    • pp.108-114
    • /
    • 1999
  • In this paper. a new automatic multi=block grid generation technique for general 2D regions is introduced. According to this simple and robust method, the domain of interest is first triangulated by using Delaunay triangulation of boundary points, and then geometric information of those triangles is used to obtain block topology. Once block boundaries are obtained. structured grid for each block is generated such that grid lines have $C^0-continuity$ across inter-block boundaries. In the final step of the present method, an elliptic grid generation method is applied to smoothen grid distribution for each block and also to re-locale the inter-block boundaries, and eventually to achieve a globally smooth multi-block structured grid system with $C^1-continuity$.

  • PDF

Surface Fairing with Boundary Continuity Based on the Wavelet Transform

  • Cho, Joo-Hyung;Kim, Tae-Wan;Lee, Kun-Woo
    • ETRI Journal
    • /
    • 제23권2호
    • /
    • pp.85-95
    • /
    • 2001
  • The surface modeling capability of CAD systems is widely used to design products bounded by free form surfaces and curves. However, the surfaces or curves generated by popular data fitting methods usually have shape imperfections such as wiggles. Thus, fairing operations are required to remove the wiggles, which makes the surfaces or curves smooth. This paper proposes a new method based on the wavelet transform for fairing the surfaces or curves while preserving the continuity with adjacent surfaces or curves. The wavelet transform gives a hierarchical perspective of the surfaces and the curves, which can be decomposed into the overall sweep and details, i.e., local deviations from sweep like the wiggles. The proposed fairing method provides a similar effect on the mathematical surface as that of the grinding operation using sandpaper on the physical surface.

  • PDF

A Meshfree procedure for the microscopic analysis of particle-reinforced rubber compounds

  • Wu, C.T.;Koishi, M.
    • Interaction and multiscale mechanics
    • /
    • 제2권2호
    • /
    • pp.129-151
    • /
    • 2009
  • This paper presents a meshfree procedure using a convex generalized meshfree (GMF) approximation for the large deformation analysis of particle-reinforced rubber compounds on microscopic level. The convex GMF approximation possesses the weak-Kronecker-delta property that guarantees the continuity of displacement across the material interface in the rubber compounds. The convex approximation also ensures the positive mass in the discrete system and is less sensitive to the meshfree nodal support size and integration order effects. In this study, the convex approximation is generated in the GMF method by choosing the positive and monotonic increasing basis function. In order to impose the periodic boundary condition in the unit cell method for the microscopic analysis, a singular kernel is introduced on the periodic boundary nodes in the construction of GMF approximation. The periodic boundary condition is solved by the transformation method in both explicit and implicit analyses. To simulate the interface de-bonding phenomena in the rubber compound, the cohesive interface element method is employed in corporation with meshfree method in this study. Several numerical examples are presented to demonstrate the effectiveness of the proposed numerical procedure in the large deformation analysis.

유선추적법을 이용한 자유표면 예측기법 개발 (Prediction of Free Surface by Streamline-Tracing Method)

  • 김태효;황상무
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.175-178
    • /
    • 1998
  • Tracings streamlines in global coordinate, especially with finite element mesh, requires much computation due to C0 continuity of velocity field. In this study, a new approach is presented for the determination of streamlines from velocity field obtained by FE analysis. It is shown that amount of calculation can be drastically reduced and boundary of element can be easily treated. The approach is applied to the problem of free surface of deforming workpieces in shape rolling.

  • PDF

Eigenvalue Analysis of Double-span Timoshenko Beams by Pseudo spectral Method

  • Lee, Jin-Hee
    • Journal of Mechanical Science and Technology
    • /
    • 제19권9호
    • /
    • pp.1753-1760
    • /
    • 2005
  • The pseudo spectral method is applied to the free vibration analysis of double-span Timoshenko beams. The analysis is based on the Chebyshev polynomials. Each section of the double-span beam has its own basis functions, and the continuity conditions at the intermediate support as well as the boundary conditions are treated separately as the constraints of the basis functions. Natural frequencies are provided for different thickness-to-length ratios and for different span ratios, which agree with those of Euler-Bernoulli beams when the thickness-to-length ratio is small but deviate considerably as the thickness-to-length ratio grows larger.

Time-dependent Double Obstacle Problem Arising from European Option Pricing with Transaction Costs

  • Jehan, Oh;Namgwang, Woo
    • Kyungpook Mathematical Journal
    • /
    • 제62권4호
    • /
    • pp.615-640
    • /
    • 2022
  • In this paper, we investigate a time-dependent double obstacle problem associated with the model of European call option pricing with transaction costs. We prove the existence and uniqueness of a W2,1p,loc solution to the problem. We then characterize the behavior of the free boundaries in terms of continuity and values of limit points.

N층유전체로 채워진 원형도파관의 전송특성에 관한 연구

  • 김순희;홍의석;이재호
    • 한국통신학회:학술대회논문집
    • /
    • 한국통신학회 1986년도 춘계학술발표회 논문집
    • /
    • pp.198-201
    • /
    • 1986
  • In this paper. an accurate numerical method is used to analyze the circular waveguide filled axially with N dielectrics. From the field representations in each region, applying continuity equations and boundary conditions, a eigenvalue equation is derived. The propagation constant which satisfies the eigenvalue equation is evaluated by using numerical method and compared with some references. The results can be used to analyze the dielectric resonaters and dielectric waveguies as well as optical fibers.

  • PDF

Numerical Study on Characteristics of Ship Wave According to Shape of Waterway Section

  • Hong Chun-Beom;Lee Sang-Min
    • Journal of Mechanical Science and Technology
    • /
    • 제19권12호
    • /
    • pp.2263-2269
    • /
    • 2005
  • The ship wave phenomena in the restricted waterway were investigated by a numerical analysis. The Euler and continuity equations were employed for the present study. The boundary fitted and moving grid system was adopted to enhance the computational efficiency. The convective terms in the governing equations and the kinematic free surface boundary condition were solved by the Constrained Interpolated Profile (CIP) algorithm in order to solve accurately wave heights in far field as well as near field. The advantage of the CIP method was verified by the comparison of the computed results by the CIP and the Maker and Cell (MAC) method. The free surface flow simulation around Wigley hull was performed and compared with the experiment for the sake of the validation of the numerical method. The present numerical scheme was applied to the free surface simulation for various canal sections in order to understand the effect of the sectional shape of waterways on the ship waves. The wave heights on the side wall and the shape of the wave patterns with their characteristics of flow are discussed.

직교이방성 재료의 구멍주위에 관한 하이브리드 응력해석시 요소크기의 효과 (Effect of element size in hybrid stress analysis around a hole in loaded orthotropic composites)

  • 백태현
    • 대한기계학회논문집A
    • /
    • 제21권10호
    • /
    • pp.1702-1711
    • /
    • 1997
  • A numerical study for the number of terms of a power series stress function and the effect of hybrid element size on stress analysis around a hole in loaded orthotropic composites is presented. The hybrid method coupling experimental and/or theoretical inputs and complex variable formulations involving conformal mappings and analytical continuity is used to calculate tangential stress on the boundary of the hole in uniaxially loaded, finite width glass epoxy tensile plate. The tests are done by rarying the number of terms, element size and nodal locations on the external boundary of the hybrid region. The numerical results indicate that the hybrid method is accurate and powerful in both experimental and numerical stress analysis.