• Title/Summary/Keyword: content retrieval

Search Result 804, Processing Time 0.031 seconds

Implementation of Content Based Color Image Retrieval System using Wavelet Transformation Method (웨블릿 변환기법을 이용한 내용기반 컬러영상 검색시스템 구현)

  • 송석진;이희봉;김효성;남기곤
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.1
    • /
    • pp.20-27
    • /
    • 2003
  • In this paper, we implemented a content-based image retrieval system that user can choose a wanted query region of object and retrieve similar object from image database. Query image is induced to wavelet transformation after divided into hue components and gray components that hue features is extracted through color autocorrelogram and dispersion in hue components. Texture feature is extracted through autocorrelogram and GLCM in gray components also. Using features of two components, retrieval is processed to compare each similarity with database image. In here, weight value is applied to each similarity value. We make up for each defect by deriving features from two components beside one that elevations of recall and precision are verified in experiment results. Moreover, retrieval efficiency is improved by weight value. And various features of database images are indexed automatically in feature library that make possible to rapid image retrieval.

Image Retrieval using Distribution Block Signature of Main Colors' Set and Performance Boosting via Relevance feedback (주요 색상의 분포 블록기호를 이용한 영상검색과 유사도 피드백을 통한 이미지 검색)

  • 박한수;유헌우;장동식
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.2
    • /
    • pp.126-136
    • /
    • 2004
  • This paper proposes a new content-based image retrieval algorithm using color-spatial information. For the purpose, the paper suggests two kinds of indexing key to prune away irrelevant images to a given query image; MCS(Main Colors' Set), which is related with color information and DBS (Distribution Block Signature), which is related with spatial information. After successively applying these filters to a database, we could get a small amount of high potential candidates that are somewhat similar to the query image. Then we would make use of new QM(Quad modeling) and relevance feedback mechanism to obtain more accurate retrieval. It would enhance the retrieval effectiveness by dynamically modulating the weights of color-spatial information. Experiments show that the proposed algorithm can apply successfully image retrieval applications.

Content-based Image Retrieval using Feature Extraction in Wavelet Transform Domain (웨이브릿 변환 영역에서 특징추출을 이용한 내용기반 영상 검색)

  • 최인호;이상훈
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.4
    • /
    • pp.415-425
    • /
    • 2002
  • In this paper, we present a content-based image retrieval method which is based on the feature extraction in the wavelet transform domain. In order to overcome the drawbacks of the feature vector making up methods which use the global wavelet coefficients in subbands, we utilize the energy value of wavelet coefficients, and the shape-based retrieval of objects is processed by moment which is invariant in translation, scaling, rotation of the objects The proposed methods reduce feature vector size, and make progress performance of classification retrieval which provides fast retrievals times. To offer the abilities of region-based image retrieval, we discussed the image segmentation method which can reduce the effect of an irregular light sources. The image segmentation method uses a region-merging, and candidate regions which are merged were selected by the energy values of high frequency bands in discrete wavelet transform. The region-based image retrieval is executed by using the segmented region information, and the images are retrieved by a color, texture, shape feature vector.

  • PDF

A Semantics-based Video Retrieval System using Annotation and Feature (주석 및 특징을 이용한 의미기반 비디오 검색 시스템)

  • 이종희
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.4
    • /
    • pp.95-102
    • /
    • 2004
  • In order to process video data effectively, it is required that the content information of video data is loaded in database and semantic-based retrieval method can be available for various query of users. Currently existent contents-based video retrieval systems search by single method such as annotation-based or feature-based retrieval, and show low search efficiency md requires many efforts of system administrator or annotator because of imperfect automatic processing. In this paper, we propose semantics-based video retrieval system which support semantic retrieval of various users by feature-based retrieval and annotation-based retrieval of massive video data. By user's fundamental query and selection of image for key frame that extracted from query, the agent gives the detail shape for annotation of extracted key frame. Also, key frame selected by user become query image and searches the most similar key frame through feature based retrieval method and optimized comparison area extracting that propose. Therefore, we propose the system that can heighten retrieval efficiency of video data through semantics-based retrieval.

An Emotion-based Image Retrieval System by Using Fuzzy Integral with Relevance Feedback

  • Lee, Joon-Whoan;Zhang, Lei;Park, Eun-Jong
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.683-688
    • /
    • 2008
  • The emotional information processing is to simulate and recognize human sensibility, sensuality or emotion, to realize natural and harmonious human-machine interface. This paper proposes an emotion-based image retrieval method. In this method, user can choose a linguistic query among some emotional adjectives. Then the system shows some corresponding representative images that are pre-evaluated by experts. Again the user can select a representative one among the representative images to initiate traditional content-based image retrieval (CBIR). By this proposed method any CBIR can be easily expanded as emotion-based image retrieval. In CBIR of our system, we use several color and texture visual descriptors recommended by MPEG-7. We also propose a fuzzy similarity measure based on Choquet integral in the CBIR system. For the communication between system and user, a relevance feedback mechanism is used to represent human subjectivity in image retrieval. This can improve the performance of image retrieval, and also satisfy the user's individual preference.

  • PDF

An Encrypted Speech Retrieval Scheme Based on Long Short-Term Memory Neural Network and Deep Hashing

  • Zhang, Qiu-yu;Li, Yu-zhou;Hu, Ying-jie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2612-2633
    • /
    • 2020
  • Due to the explosive growth of multimedia speech data, how to protect the privacy of speech data and how to efficiently retrieve speech data have become a hot spot for researchers in recent years. In this paper, we proposed an encrypted speech retrieval scheme based on long short-term memory (LSTM) neural network and deep hashing. This scheme not only achieves efficient retrieval of massive speech in cloud environment, but also effectively avoids the risk of sensitive information leakage. Firstly, a novel speech encryption algorithm based on 4D quadratic autonomous hyperchaotic system is proposed to realize the privacy and security of speech data in the cloud. Secondly, the integrated LSTM network model and deep hashing algorithm are used to extract high-level features of speech data. It is used to solve the high dimensional and temporality problems of speech data, and increase the retrieval efficiency and retrieval accuracy of the proposed scheme. Finally, the normalized Hamming distance algorithm is used to achieve matching. Compared with the existing algorithms, the proposed scheme has good discrimination and robustness and it has high recall, precision and retrieval efficiency under various content preserving operations. Meanwhile, the proposed speech encryption algorithm has high key space and can effectively resist exhaustive attacks.

Distorted Image Database Retrieval Using Low Frequency Sub-band of Wavelet Transform (웨이블릿 변환의 저주파수 부대역을 이용한 왜곡 영상 데이터베이스 검색)

  • Park, Ha-Joong;Kim, Kyeong-Jin;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.1
    • /
    • pp.8-18
    • /
    • 2008
  • In this paper, we propose an efficient algorithm using wavelet transform for still image database retrieval. Especially, it uses only the lowest frequency sub-band in multi-level wavelet transform so that a retrieval system uses a smaller quantity of memory and takes a faster processing time. We extract different textured features, statistical information such as mean, variance and histogram, from low frequency sub-band. Then we measure the distances between the query image and the images in a database in terms of these features. To obtain good retrieval performance, we use the first feature (mean and variance of wavelet coefficients) to filter out most of the unlikely images. The rest of the images are considered to be candidate images. Then we apply the second feature (histogram of wavelet coefficient) to rank all the candidate images. To evaluate the algorithm, we create various distorted image databases using MIT VisTex texture images and PICS natural images. Through simulations, we demonstrate that our method can achieve performance satisfactorily in terms of the retrieval accuracy as well as the both memory requirement and computational complexity. Therefore it is expected to provide good retrieval solution for JPEG-2000 using wavelet transform.

  • PDF

A Image Retrieval Model Based on Weighted Visual Features Determined by Relevance Feedback (적합성 피드백을 통해 결정된 가중치를 갖는 시각적 특성에 기반을 둔 이미지 검색 모델)

  • Song, Ji-Young;Kim, Woo-Cheol;Kim, Seung-Woo;Park, Sang-Hyun
    • Journal of KIISE:Databases
    • /
    • v.34 no.3
    • /
    • pp.193-205
    • /
    • 2007
  • Increasing amount of digital images requires more accurate and faster way of image retrieval. So far, image retrieval method includes content-based retrieval and keyword based retrieval, the former utilizing visual features such as color and brightness and the latter utilizing keywords which describe the image. However, the effectiveness of these methods as to providing the exact images the user wanted has been under question. Hence, many researchers have been working on relevance feedback, a process in which responses from the user are given as a feedback during the retrieval session in order to define user’s need and provide improved result. Yet, the methods which have employed relevance feedback also have drawbacks since several feedbacks are necessary to have appropriate result and the feedback information can not be reused. In this paper, a novel retrieval model has been proposed which annotates an image with a keyword and modifies the confidence level of the keyword in response to the user’s feedback. In the proposed model, not only the images which have received positive feedback but also the other images with the visual features similar to the features used to distinguish the positive image are subjected to confidence modification. This enables modifying large amount of images with only a few feedbacks ultimately leading to faster and more accurate retrieval result. An experiment has been performed to verify the effectiveness of the proposed model and the result has demonstrated rapid increase in recall and precision while receiving the same number of feedbacks.

The Noise Robust Algorithm to Detect the Starting Point of Music for Content Based Music Retrieval System (노이즈에 강인한 음악 시작점 검출 알고리즘)

  • Kim, Jung-Soo;Sung, Bo-Kyung;Koo, Kwang-Hyo;Ko, Il-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.9
    • /
    • pp.95-104
    • /
    • 2009
  • This paper proposes the noise robust algorithm to detect the starting point of music. Detection of starting point of music is necessary to solve computational-waste problem and retrieval-comparison problem with inconsistent input data in music content based retrieval system. In particular, such detection is even more necessary in time sequential retrieval method that compares data in the sequential order of time in contents based music retrieval system. Whereas it has the long point that the retrieval is fast since it executes simple comparison in the order of time, time sequential retrieval method has the short point that data starting time to be compared should be the same. However, digitalized music cannot guarantee the equity of starting time by bit rate conversion. Therefore, this paper ensured that recognition rate shall not decrease even while executing high speed retrieval by applying time sequential retrieval method through detection of music starting point in the pre-processing stage of retrieval. Starting point detection used minimum wave model that can detect effective sound, and for strength against noise, the noises existing in mute sound were swapped. The proposed algorithm was confirmed to produce about 38% more excellent performance than the results to which starting point detection was not applied, and was verified for the strength against noise.

The Concept and Application Methods of Intelligent Content

  • Yoon Yong-Bae;Chae Song-Hwa;Kim Won-Il
    • International Journal of Contents
    • /
    • v.2 no.3
    • /
    • pp.1-5
    • /
    • 2006
  • Intelligent Content is defined as detailed information or fragment of content which contains a semantic data structure. This semantic structure makes possible to do various intelligent operations. There are wide range of content-oriented applications such as classification, retrieval, extraction, translation, presentation and question-answering. The concept of Intelligent Content is applied to various fields like MPEG and Semantic Web. In this paper, we discuss the several important researches of Intelligent Content and how to apply this conception to these fields.

  • PDF