• Title/Summary/Keyword: contamination materials

Search Result 730, Processing Time 0.024 seconds

Preparation and Characterization of the Multi-functional Complex Utilizing PCB Powder (PCB Powder를 이용한 다기능 복합체의 제조 및 특성)

  • Park, Byoung Ki
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.34-39
    • /
    • 2015
  • The feasibility of recycling wasted printed circuit board (PCB) is investigated by preparing PCB added flame retardant composites filled with either unsaturated polyester or polyurethane. In order to improve electroconductive properties, copper powder was added into the composites, which results also in improving their antistatic properties. The prepared composite samples showed a binding between the polymer fillers observed by a scanning microscope. The sample group using unsaturated polyester is elastomeric that led to appreciable elongation and elasticity. In case of polyurethane, the tensile strength increased proportionally as increase of the amount of PCB powder. The composite materials can be utilized as antistatic composite materials, since the surface resistivity result showed increase of the electroconductive properties by adding Cu. The flammability of the samples is not satisfactory according to UL-94 vertical test. However, the flame retardant properties were improved by adding PCB power. This study, therefore, showed that it is feasible to fabricate polymer composite materials and improve the material characteristics by adding PCB powder, which can replace existing additives used for the preparation of polymer composite materials and can reduce the environment contamination by recycling the wasted PCB.

Fracture Analysis of Porous Titanium for Dental Implant Fabricated by Space Holder Process (Space holder 공정으로 제조된 치과 임플란트용 타이타늄 다공체의 파손 분석)

  • Lee, Seung-Mi;Jang, Jin-Man;Lee, Won-Sik;Byeon, Jai-Won
    • Journal of Applied Reliability
    • /
    • v.16 no.2
    • /
    • pp.104-109
    • /
    • 2016
  • Purpose: The purpose of this study is to analyze fracture behavior and failure mechanism of porous titanium for dental implant fabricated by space holder process. Method: Three porous titanium specimens with a specific volume fraction of open pore were test by 3 point bending and compression stress condition, respectively. Fracture appearance was observed by scanning electron microscope and discussed in relation with oxygen content. Results: For compression-tested specimens, two specimen showed brittle failure, while the other one showed normal failure after deformation. High oxygen content was detected in the brittle-fractured specimen. Several micro-cracks initiated at the struts propagated down to the bottom of the specimen resulting in normal failure. Conclusion: Oxygen contamination during the fabrication process can leads brittle premature failure, and hence quality problem of the porous titanium for dental implant.

A Study on the Ultraviolet Aging Characteristics of Outdoor Polymeric Insulating Materials (옥외용 고분자 절연재료의 자외선 열화특성 연구)

  • Kim, Yeong-Seong;Jeong, Sun-Ok
    • Korean Journal of Materials Research
    • /
    • v.9 no.4
    • /
    • pp.409-413
    • /
    • 1999
  • Recently, the polymeric insulators have been accepted in several countries for the outdoor high voltage applications. In comparison with the conventional porcelain, polymeric insulators offer various advantages such as light weight, superior vandal resistance and better contamination performance. The outdoor polymeric insulating materials such as silicone rubber, ethylene propylene diene monomer(EPDM), ethylene vinyl acetate(EVA) and epoxy are aged such as silicone rubber, ethylene propylene diene monomer(EPDM), ethylene vinyl acetate(EVA) and epoxy are aged under the various natural environment with the long-term performance in outdoor. In this paper, the effects of UV-under the various natural environment with the long-term performance in outdoor. In this paper, the effects of UV-ray on the surface of silicone rubber were investigated by using the weather-Ometer. The accelerated aging stresses were simulated by UV radiation, high temperature and humidity as well as water spray. These aging characteristics were examined through contact angle measurements, tracking resistance test, FT-IR and SEM/EDS analysis. The experimental results showed that tracking resistance decreases with increase in the UV-ray irradiation period. But the surface of silicone rubber kept hydrophobicity. It is found that the inorganic filler such as)$ Al(OH_3$ improves tracking resistance and the $Tio_2$is very effective in preventing degradation of silicone rubber surface from UV-ray.

  • PDF

Evaluation of Self-cleaning Property by Measuring Brightness of Tio2 Coating Ceramic Tile under Outdoor Exposure Test (옥외폭로시험 Tio2 코팅 세라믹 타일의 명도측정에 의한 방오특성 평가)

  • Shin, Dae-Yong;Kim, Kyung-Nam
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.6
    • /
    • pp.345-349
    • /
    • 2008
  • $TiO_2$ coating ceramic tile for self-cleaning purpose was prepared by the precipitant dropping method using $TiCl_4$ as a precursor. $TiO_2$ film was formed on the ceramic tile by spray-coating technique and heat-treated at $500^{\circ}C$ for 1 h. The size and crystalline structure of $TiO_2$ particles were 15.3 nm and anatase phase. The outdoor exposure tests were conducted and the effects of outdoor exposure test conditions, such as exhaust concentration of contamination materials (test places), the UV light intensity (irradiation direction) and coating amounts of $TiO_2$ on the self-cleaning properties were investigated by the brightness measurements. As a results, self-cleaning property of $TiO_2$ coating tile was affected by the coating amount of $TiO_2$ however, not affected by the UV light intensity included in sun's ray (irradiation direction). $TiO_2$ coating ceramic tile can be utilized for exterior finishing materials because of self-cleaning property of $TiO_2$ coating tile.

Residue Free Fabrication of Suspended 2D Nanosheets for in-situ TEM Nanomechanics

  • Sharbidre, Rakesh Sadanand;Byen, Ji Cheol;Yun, Gyeong Yeol;Ryu, Jae-Kyung;Lee, Chang Jun;Hong, Seong-Gu;Bramhe, Sachin;Kim, Taik Nam
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.627-632
    • /
    • 2018
  • Two dimensional(2D) crystals, composed of a single layer or a few atomic layers extracted from layered materials are attracting researchers' interest due to promising applications in the nanoelectromechanical systems. Worldwide researchers are preparing devices with suspended 2D materials to study their physical and electrical properties. However, during the fabrication process of 2D flakes on a target substrate, contamination occurs, which makes the measurement data less reliable. We propose a dry transfer method using poly-methyl methacrylate(PMMA) for the 2D flakes to transfer onto the targeted substrate. The PMMA is then removed from the device by an N-Methyl-2-pyrrolidone solution and a critical point dryer, which makes the suspended 2D flakes residue free. Our method provides a clean, reliable and controllable way of fabricating micrometer-sized suspended 2D nanosheets.

Effects of Intermediate Layer in DLC Thin Film on Al2O3 for Improvement of High Temperature Strength

  • Ok, Chul-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.3
    • /
    • pp.125-130
    • /
    • 2007
  • DLC coating on ceramics is very useful for manufacturing the materials with hardness and low friction. Adhesion of DLC thin film on ceramics, on the other hand, is usually very weak. Adhesion of DLC film depends on many parameters such as contamination and chemical bonding between thin film and substrate. In this study, adhesion of DLC film on ceramics was improved by the intermediate layer when the plasma immersion ion deposition (PIID) technique was applied. It is found that the chemical composition and the thickness of intermediate layer have significantly an effect on the adhesion of DLC thin film on $Al_2O_3$.

Effects of Aging on Electrocatalytic Activities of Pt and Pd Nanoparticles

  • Dutta, Gorachand;Yang, Haesik
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.27-32
    • /
    • 2016
  • Although the time dependences of the electrocatalytic activities of Pt and Pd nanoparticles during electrochemical operations have been widely studied, the time dependences under nonpolarized conditions have never been investigated in depth. This study reports the changes in the electrocatalytic activities of Pt and Pd nanoparticles with aging in air and in solution. Pt (or Pd) nanoparticle-modified electrodes are obtained by adsorbing citrate-stabilized Pt (or Pd) nanoparticles on amine-modified indium-tin oxide (ITO) electrodes, or by electrodeposition of Pt (or Pd) nanoparticles on ITO electrodes. The electrocatalytic activities of freshly prepared Pt and Pd nanoparticles in the oxygen reduction reaction slowly decrease with aging. The electrocatalytic activities decrease more slowly in solution than in air. An increase in surface contamination may cause electrocatalytic deactivation during aging. The electrocatalytic activities of long-aged Pt (or Pd) nanoparticles are significantly enhanced and recovered by NaBH4 treatment.

Flyash를 이용한 일일복토재의 포설 사례 연구

  • 박상현;한완수;이재영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.386-389
    • /
    • 2002
  • It may be necessary to apply a daily fever to operate the municipal solid waste landfill. The daily cover helps to control nuisance factors such as the escape of odors, dusts and airborne emissions, and can control the population of disease vectors. Also it may be reduce the infiltration of rain, decreasing the generation of leachate and the potential for surface water and groundwater contamination. Because of its usual availability and traditional usage as the municipal solid waste landfill, soil remains as the most common daily cover material. However, soil tends to reduce the volume of dumping waste c;3pacity in the landfill, it also reduces a period of using in the landfill. Therefore, it is necessary to research about Alternative Daily Cover Materials (ADCMs) because of the limitation of landfill sites. Recently, The types of ADCMs are classified into geosynthetics, forms, spray-ons, indigenous materials. In this study, the authors have tested the spray type of Alternative Daily Cover(ADC) using by flyash, alum with cement. The development. of ADCMs will be highly effective in terms of prolongation using landfill.

  • PDF

CFCs 조사를 위한 지하수 시료채취방법 비교 및 평가

  • 고동찬;이대하;성현정;강철희;고경석
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.21-23
    • /
    • 2002
  • Two sampling methods for chlorofluorocarbons(CFCs) in groundwater were compared and assessed with groundwater samples in Jeju Island. CFCs concentrations from copper tube method were widely variable among triplicates and higher than those from flame-sealed glass ampule method. For the copper tube method, this is aggravated by rubber packings in the faucet of discharge line of wells, which was removed for the glass ampule method. The poor reproducibility and apparent contamination of results by copper tube method is due to the improper sealing of copper tubes and materials in water discharge line. This suggests that it is more difficult to achieve complete isolation from the atmosphere in the copper tube method and that materials that could release CFCs should be avoided along the sampling flow lines. It seems that the flame-sealed glass ampule method is more relevant for groundwater sampling for CFCs though it requires more complicated equipments and procedures.

  • PDF

Growth of GaN on ZnO Substrate by Hydride Vapor-Phase Epitaxy (ZnO 기판 위에 Hydride Vapor-Phase Epitaxy법에 의한 GaN의 성장)

  • Jo, Seong-Ryong;Kim, Seon-Tae
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.304-307
    • /
    • 2002
  • A zinc oxide (ZnO) single crystal was used as a substrate in the hydride vapor-phase epitaxy (HVPE) growth of GaN and the structural and optical properties of GaN layer were characterized by x- ray diffraction, transmission electron microscopy, secondary ion mass spectrometry, and photoluminescence (PL) analysis. Despite a good lattice match and an identical structure, ZnO is not an appropriate substrate for application of HVPE growth of GaN. Thick film could not be grown. The substrate reacted with process gases and Ga, being unstable at high temperatures. The crystallinity of ZnO substrate deteriorated seriously with growth time, and a thin alloy layer formed at the growth interface due to the reaction between ZnO and GaN. The PL from a GaN layer demonstrated the impurity contamination during growth possibly due to the out-diffusion from the substrate.