Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.11.627

Residue Free Fabrication of Suspended 2D Nanosheets for in-situ TEM Nanomechanics  

Sharbidre, Rakesh Sadanand (Department of Material Science Engineering, Paichai University)
Byen, Ji Cheol (Department of Material Science Engineering, Paichai University)
Yun, Gyeong Yeol (Department of Material Science Engineering, Paichai University)
Ryu, Jae-Kyung (Department of Dental Technology and Science, ShinHan University)
Lee, Chang Jun (Division of Industrial Metrology, Korea Research Institute of Standards and Science)
Hong, Seong-Gu (Division of Industrial Metrology, Korea Research Institute of Standards and Science)
Bramhe, Sachin (Department of Material Science Engineering, Paichai University)
Kim, Taik Nam (Department of Material Science Engineering, Paichai University)
Publication Information
Korean Journal of Materials Research / v.28, no.11, 2018 , pp. 627-632 More about this Journal
Abstract
Two dimensional(2D) crystals, composed of a single layer or a few atomic layers extracted from layered materials are attracting researchers' interest due to promising applications in the nanoelectromechanical systems. Worldwide researchers are preparing devices with suspended 2D materials to study their physical and electrical properties. However, during the fabrication process of 2D flakes on a target substrate, contamination occurs, which makes the measurement data less reliable. We propose a dry transfer method using poly-methyl methacrylate(PMMA) for the 2D flakes to transfer onto the targeted substrate. The PMMA is then removed from the device by an N-Methyl-2-pyrrolidone solution and a critical point dryer, which makes the suspended 2D flakes residue free. Our method provides a clean, reliable and controllable way of fabricating micrometer-sized suspended 2D nanosheets.
Keywords
graphene; molybdenum disulphide; suspended nanosheet; dry transfer; poly-methyl methacrylate;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 M. C. Hersam and B. J. LeRoy, APL Mater., 2, 092201 (2014).   DOI
2 S. Das, J. A. Robinson, M. Dubey, H. Terrones, and M. Terrones, Annu. Rev. Mater. Res., 45, 1 (2015).   DOI
3 A. K. Geim and K.S. Novoselov, Nat. Mater., 6, 183 (2007).   DOI
4 A. K. Geim, Science, 324, 1530 (2009).   DOI
5 F. Xia, D. B. Farmer, Y. Lin and P. Avouris, Nano Lett., 10, 715 (2010).   DOI
6 M. Chen, R.C. Haddon, R. Yan, and E. Bekyarova, Mater. Horiz., 4, 1054 (2017).   DOI
7 A. C. Ferrari, F. Bonaccorso, V. Fal'ko, K. S. Novoselov, S. Roche, P Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L Colombo, A. Fert, M. G.-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J.-H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. D. Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwanderaq, and J. Kinaretba, Nanoscale, 7, 4598 (2015).   DOI
8 J. H. Lee, D. W. Jang, S. G. Hong, B. C. Park, J. H. Kim, H. J. Jung, and S. B. Lee, Carbon, 118, 475 (2017).   DOI
9 S. Wagner, C. Weisenstein, S. Kataria, and M. C. Lemme, in Proceedings of Micro and Nano Engineering At The Hague, 45, 57076 (2015).
10 Z. Moktadir, Graphene, 2, 341 (2014).
11 T. Kuila, S. Bose, P. Khanra, A. K. Mishra, N. H. Kim, J. H. Lee, Biosens. Bioelectron., 26, 4637 (2011).   DOI
12 M. Pumera, Mater. Today, 14, 308 (2011).   DOI
13 T. Mahmoudi, Y. Wang, and Y. B. Hahn, Nano Energy, 47, 51 (2018).   DOI
14 Z. H. Khan, A. R. Kermany, A. Ochsner and F. Iacopi, J. Physics D: App. Phys., 50, 053003 (2017).   DOI
15 K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger. P. Kim, and A. K. Geim, Science, 315, 1379 (2007).   DOI
16 S. Kim, A. Konar, W. S. Hwang, D. Jena, and W. Cho, Nat. Commun., 3, 1011 (2012).   DOI
17 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K.S. Novoselov and A. K. Geim, Rev. Mod. Phys., 81, 109 (2009).   DOI
18 H. J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund Jr., S. T. Pantelides, and K. I. Bolotin, Nano Lett., 13, 3626 (2013).   DOI
19 A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, Nano Lett., 10, 1271 (2010).   DOI
20 B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol., 6, 147 (2011).   DOI
21 I. W. Frank, D. M. Tanenbaum, A. M. van der Zande and P. L. McEuen, J. Vac. Sci. Technol., B: Microelectronics and Nanometer Structures, 25, 2558 (2007).   DOI
22 J. Y. Huang, L. Qi, and J. Li, Nano Research, 3, 43 (2010).   DOI
23 M. Goldsche, G. J. Verbiest, T. Khodkov, J. Sonntag, N. Driesch, D. Buca, and C. Stampfer, Nanotechnology, 29, (2018).
24 A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. van der Zant, N. Agrait, and G. Rubio-Bollinger, Adv. Mater., 24, 772 (2012).   DOI
25 J. Brivio, D. T. L. Alexander, and A. Kis, Nano Lett., 11, 5148 (2011).   DOI
26 S. Bertolazzi, J. Brivio, and A. Kis, ACS Nano, 5, 9703 (2011).   DOI
27 B. Jang, A. E. Mag-isa, J. H. Kim, B. W. Kim, H. J. Lee, C. S. Oh, T. Sumigawa, and T. Kitamura, Extreme Mech. Lett., 14, 10 (2017).   DOI
28 H. Park, Nanotechnology, 29, 415303 (2018).   DOI
29 C. Androulidakis, K. Zhang, M. Robertson, and S. Tawfick, 2D Materials, 5, 032005 (2018).   DOI
30 M. Her, R. Beams, and L. Novotny, Phys. Lett., Section A: General, Atomic and Solid State Physics, 377, 1455 (2013).
31 G. Nanda, S. Goswami, K. Watanabe, T. Taniguchi, and P. F. A Alkemade, Nano Lett., 15, 4006 (2015).   DOI
32 H. Li, J. Wu, X. Huang, Z. Yin, J. Liu, and H. Zhang, ACS Nano, 8, 6563 (2014).   DOI
33 R. Frisenda, E. Navarro-Moratalla, P. Gant, D. P. De Lara, P. Jarillo-Herrero, R. V. Gorbachevc, and A. Castellanos-Gomez, Chem. Soc. Rev., 47, 53 (2018)   DOI
34 L. Yuan, J. Ge, X. Peng, Q. Zhang, Z. Wu, Y. Jian, X. Xiong, H. Yin, and J. Han, AIP Advances, 6, 125201 (2016).   DOI
35 Y. Huang, E. Sutter, N. N. Shi, J. Zheng, T. Yang, D. Englund, H.-J. Gao, and P. Sutter, ACS Nano, 9, 10612 (2015).   DOI
36 R. S. Sharbidre, S. M. Park, C. J. Lee, B. C. Park, S.-G. Hong, S. Bramhe, G. Y. Yun, J.-K. Ryu and T. N. Kim, Korean J. Mater. Res., 27, 705 (2017).   DOI
37 R. S. Sharbidre, C. J. Lee, S. G. Hong, J. Ryu, and T. N. Kim, Korean J. Mater. Res., 26, 704 (2016).   DOI
38 C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, Nano Lett., 7, 2711 (2007).   DOI
39 D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, Nano lett., 7, 238 (2007).   DOI
40 Y. Naitou and S. Ogawa, Appl. Phys. Lett., 108, 171605 (2016).   DOI
41 P. Zhang et al., Nat. Commun., 5, 3782 (2014).   DOI
42 H. Kim, H. Yun, H. A. Yoon, and S. W. Lee, Adv. Energy Mater., 4, 1301973 (2014).   DOI
43 B. Jang et al., Nanoscale, 9, 17325 (2017).   DOI