Browse > Article
http://dx.doi.org/10.5229/JECST.2016.7.1.1

Effects of Aging on Electrocatalytic Activities of Pt and Pd Nanoparticles  

Dutta, Gorachand (Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University)
Yang, Haesik (Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University)
Publication Information
Journal of Electrochemical Science and Technology / v.7, no.1, 2016 , pp. 27-32 More about this Journal
Abstract
Although the time dependences of the electrocatalytic activities of Pt and Pd nanoparticles during electrochemical operations have been widely studied, the time dependences under nonpolarized conditions have never been investigated in depth. This study reports the changes in the electrocatalytic activities of Pt and Pd nanoparticles with aging in air and in solution. Pt (or Pd) nanoparticle-modified electrodes are obtained by adsorbing citrate-stabilized Pt (or Pd) nanoparticles on amine-modified indium-tin oxide (ITO) electrodes, or by electrodeposition of Pt (or Pd) nanoparticles on ITO electrodes. The electrocatalytic activities of freshly prepared Pt and Pd nanoparticles in the oxygen reduction reaction slowly decrease with aging. The electrocatalytic activities decrease more slowly in solution than in air. An increase in surface contamination may cause electrocatalytic deactivation during aging. The electrocatalytic activities of long-aged Pt (or Pd) nanoparticles are significantly enhanced and recovered by NaBH4 treatment.
Keywords
Pt nanoparticles; Pd nanoparticles; electrocatalytic activity; oxygen reduction reaction; aging;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. Garbarino, A. Pereira, C. Hamel, E´. Irissou, M. Chaker and D. Guay, J. Phys. Chem. C, 114, 2980 (2010).
2 R. C. Cerritos, M. Guerra-Balcázar, R. F. Ramírez, J. Ledesma-Garcia and L. G. Arriaga, Materials, 5, 1686 (2012).   DOI
3 B. N. Wanjala, B. Fang, J. Luo, Y. Chen, J. Yin, M. H. Engelhard, R. Loukrakpam and C.-J Zhong, J. Am. Chem. Soc., 133, 12714 (2011).   DOI
4 J. Bao, M. Dou, H. Liu, F. Wang, J. Liu, Z. Li and J. Ji, ACS Appl. Mater. Interfaces, 7, 15223 (2015).   DOI
5 G. He, Y. Song, X. Kang and S. Chen, Electrochim. Acta, 94, 98 (2013).   DOI
6 J. Das, H. Kim, K. Jo, K. H Park, S. Jon, K. Lee and H. Yang, Chem. Commun., 6394 (2009).
7 H. J. Kang, S. Patra, J. Das, A. Aziz, J. Jo and H. Yang, Electrochem. Commun., 12, 1245 (2010).   DOI
8 G. Dutta, K. Jo, H. Lee, B. Kim, H. Y. Woo and H. Yang, J. Electroanal. Chem., 675, 41 (2012).   DOI
9 V.-D. Dao and H.-S. Choi, Electrochim. Acta, 93, 287 (2013).   DOI
10 G. Dutta, A.-M. Jiaul and H. Yang, Electrochim. Acta, 141, 319 (2014).   DOI
11 M. Huang, Y. Shao, X. Sun, H. Chen, B. Liu, and S. Dong, Langmuir, 21, 323 (2005).   DOI
12 M. S. El-Deab, F. Kitamura and T. Oshsaka, J. Electrochem. Soc., 160, F651 (2013).   DOI
13 F. Godínez-Salomón, E. Arce-Estrada and M. Hallen-López, Int. J. Electrochem. Sci., 7, 2566 (2012).
14 A. Datta, S. Kapri and S. Bhattacharyya, Green Chem., 17, 1572 (2015).   DOI
15 M. K. Debe, Nature, 43, 486 (2012).
16 A. Sáez, J. Solla-Gullón, E. Expósito, A. Aldaz and V. Montiel, Int. J. Electrochem. Sci., 8, 7030 (2013).
17 H. J. Park and S. H. Hur J. Korean Electrochem. Soc., 17, 201 (2014).   DOI
18 E. Spain, H. McArdle, T. E. Keyes and R.-J. Forster, Analyst, 138, 4340 (2013).   DOI
19 S. H. Lim, J. Wei, J. Lin, Q. Li and J. K. You, Biosens. Bioelectron., 20, 2341 (2005).   DOI
20 M. Rashid, T.-S. Jun and Y. S. Kim, J. Korean Electrochem. Soc., 17, 18 (2014).   DOI
21 V. T. T. Ho, C.-J. Pan, J. Rick, W.-N. Su and B.-J. Hwang, J. Am. Chem. Soc., 133, 11716 (2011).   DOI
22 S. Y. Ang and D. A. Walsh, Appl. Catal., B, 98, 49 (2010).   DOI