본 연구는 SARIMA 모형을 활용하여 기존에 다루어지지 않았던 분기별 항만 컨테이너 물동량을 예측하였다. 구체적으로 모델 추정에 활용된 자료는 1994년 1사분기부터 2010년 4사분기까지 총 84분기동안의 국내 전체 항만 컨테이너 물동량 자료이다. 본 연구에서 추정된 예측 모형의 예측 정확도를 검증하기 위하여 2011년 1사분기부터 2013년 4사분기까지 물동량을 예측하여 실제 물동량과 비교하였다. 또한 기존에 널리 활용되고 있는 ARIMA 모형을 활용하여 추정한 예측 모형과의 비교를 통해 분기별 항만 물동량 예측에 있어서 SARIMA 모형의 상대적 우수성을 검증하였다. 기존에 항만 물동량을 예측하는 대부분의 연구는 주로 장기 예측에 초점이 맞추어져 있다. 또한 월별, 연도별 물동량 자료가 활용된 경우가 대부분이다. 분기별 항만 컨테이너 물동량 자료를 활용하여 단기 수요를 예측함과 동시에 SARIMA 모형의 우수성을 입증한 본 연구는 충분한 가치가 있다고 판단된다.
항만 물동량 예측은 항만관리 기관의 투자계획에 매우 중요한 요소이다. 더불어 최근 항만은 물동량 유치를 위한 치열한 경쟁을 이어가고 있기 때문에 항만 정책수립에 있어 국내외 주요국의 물동량 예측은 중요한 의미를 갖는다. 항만 물동량 예측이 항만의 개발정책에 매우 중요하지만 최적의 물동량 예측 모델 개발에는 아직 어려움을 겪고 있다. 이러한 측면에서 본 연구는 중국 컨테이너 물동량 예측모델 제시를 연구의 목적으로 하였다. 중국 컨테이너 물동량 예측은 Clarkson's Shipping Intelligence Network를 통해 수집한 2004년 1월부터 2015년 12월까지 12년간의 월간 데이터를 System Dynamics를 사용하여 2004년부터 2020년까지 변화를 시뮬레이션 하였다. 실제 중국 컨테이너 물동량 데이터와 Stock-flow 다이어그램을 통해 도출된 예측값을 비교하여 모델의 정확도를 검증했다. 검증결과 수 출입 컨테이너 예측모델은 MAPE값이 각각 6.21 %, 7.68 %로 나타나 정확한 예측모델로 확인되었다.
The forecasting of container cargo volumes should be estimated correctly because it has a key roles on the establishment of port development planning, and the decision of port operating system. Container cargo volumes have a dynamic characteristics which was changed by effect of competitive ports. Accordingly forecasting was needed overall approach about competitive port's development, alternation and information. But, until now, traffic forecasting was not executed according to competitive situation, and that was accomplished at the point of unit port. Generally, considering the competition situation, simulation method was desirable at forecasting because system's scale was increased, and the influence power was intensified. In this paper, considering this situation, the objectives can be outlined as follows. 1) Structural model constructs by System dynamics method. 2) Structural simulation model develops according to modelling of competitive situation by expended SD method which included HEP(Hierarchical Fuzzy Process) And actually, effectiveness was verified according to proposed model to major port in northeast asia.
해운항만물류산업은 세계 경제활동과 밀접한 관계를 가지고 있으며, 특히 무역의존도가 높은 우리나라의 항만 시설은 중요한 사회간접자본시설이다. 부산항은 우리나라 최대의 항만으로 우리나라 컨테이너 운송의 75%가 부산항을 통해 운송되고 있으며, 국가 경쟁력 측면에서 그 중요성은 매우 크다. 항만 물동량 예측은 항만 개발 및 운영 전략에 영향을 미치며, 정확도 높은 컨테이너 물동량 예측은 필수적이다. 하지만 오늘날 해운항만물류산업 환경의 급격한 변화로 인해 기존 시계열 예측 방법으로는 예측 정확도 향상에 어려움이 있다. 본 연구에서는 부산항 컨테이너 물동량 예측 정확도 향상을 위해 딥러닝 모형 중 LSTM 모형을 활용하여 컨테이너 물동량을 예측한다. 모형의 성능 평가를 위해서 SARIMA 모형과 LSTM 모형의 예측 정확도를 비교한다. 그 결과 LSTM 모형이 SARIMA 모형보다 예측 정확도가 높게 나타났으며, 예측치가 실측치의 특성을 반영하여 잘 나타나고 있음을 확인하였다.
해운 항만 분야에서의 환적화물은 항만 물동량의 증가와 고부가가치 산업의 활성화를 통해 국가 및 지역 경제발전에 긍정적인 영향을 미치는 중요한 화물이다. 하지만 최근 중국의 경제성장 및 지속적인 항만 개발로 인해 중국으로 직기항하는 대형선박이 증가함에 따라 우리나라의 환적 물동량은 점차 감소할 것 이라는 예측결과가 제시되고 있다. 우리나라의 경우 항만 물동량 예측을 통해 항만 개발 계획이 수립되고 있으며, 일반적으로 환적화물이 전체화물의 40%를 차지할 것이라는 전제하에 개발을 추진하기 때문에 환적물동량 예측은 중요한 과제이다. 하지만 기존의 연구들은 항만 경쟁력의 변화를 고려하지 않고 과거 실적치를 통하여해 환적화물을 예측한 연구들이 대부분이다. 이러한 측면에서 본 연구에서는 SD기법을 통해 동태적인 관점에서 항만 경쟁력 지수 및 환적 물동량 변화치를 예측하는 것을 목적으로 하였다. 본 연구 수행 결과 2030년에는 한국의 경우 약 2천만TEU의 환적화물이 처리될 것으로 예측 되었으며, 중국의 경우 약9,000만TEU, 일본의 경우 약 250만TEU의 환적화물이 처리될 것으로 전망되었다. 즉 한국과 중국의 경우 연평균 4%, 6%의 성장세를 보여 환적화물 처리량은 지속적으로 증가할 것으로 예상되지만, 일본은 연평균 1%대의 증가세를 보여 일정수준으로 유지될 것으로 분석되었다. 본 연구의 결과는 컨테이너 항만의 환적화물 유치 및 경쟁력 확보를 위한 기초자료로 사용될 수 있다.
본 연구에서는 항만의 단기 물동량을 예측하기 위해 ARIMA 모형과 CART 모형을 활용한 단기 수요예측 모형을 제시하였다. 제시한 모형은 2단계로 구성된다. 1단계에서는 시계열 예측치와 주요 교역국의 주당 근로일수를 변수로 사용하여 CART 모형을 추정하고 주별 물동량 예측을 진행한다. 2단계에서는 1단계에서 도출한 예측치와 요일 정보, 주요국 공휴일 정보, 주요국 행사 기간 정보를 설명변수로 활용하여 최종적인 일별 물동량 예측 모형을 추정한다. 제시한 수요예측 모형을 활용하여 2020년 10월 1일부터 12월 31일까지 92일의 부산항 물동량을 예측한 결과 제시한 모형의 평균 정확도가 기존 시계열 모형보다 '22.5%' 높은 것으로 나타났다. 제시 모형은 일별 물동량의 추세뿐만 아니라 물동량이 급등락하는 지점에서도 높은 정확도를 보였으며 시계열 예측 모형을 사용했을 때 비해 총 166,504(TEU)의 오차를 줄일 수 있는 것으로 나타났다. 항만의 효율적인 운영을 위해 필수적인 단기 물동량 예측에 적합한 예측 모형을 제시한 본 연구는 충분한 활용 가치가 있을 것으로 판단된다.
In Pusan port, the studies, which analysis container cargo volumes by using forecasting methods and research about container logistics system, etc., have been continuously performed. But, in Pusan port, this study on an evaluation of traffic congestion has been scarcely performed until now. Especially, when changing and extending a berth, and constructing a new port, it is very important to examine this field. And it should be considered. Thus, this paper aims to analysis the effect of ship traffic condition in 2011, to evaluate marine traffic congestion, according to changing ship traffic volumes in Pusan port. To analysis it, we used simulation method and examined the results
In Pusan port, the studies which analyze container cargo volumes by using forecasting methods and research about container logistics system, etc., have been continuously carried out. But, in Pusan port, the study on an evaluation of traffic congestion has been scarcely performed until now. Especially, when changing and extending a berth, or constructing a new port, it is very important to examine this field. And it should be considered. Thus, this paper aims to analyze the effect of ship traffic condition in the year 2011, to evaluate marine traffic congestion according to changing ship traffic volumes in Pusan port. To analyze it, we examined the results by simulation method.
공컨테이너(Empty Container)는 적컨테이너(Full Container)와 달리, 화물이 적재되지 않은 비어있는 컨테이너로 공컨테이너 재고는 수출에 비해 수입이 많은 항만에서, 수요는 수입에 비해 수출이 많은 항만에서 발생한다. 그러나 수입과 수출은 기간, 지역에 따라 유동적이기 때문에 수요와 재고량 예측에 어려움이 있는데, 본 연구에서는 자기회귀누적이동평균(ARIMA)과 머신러닝 기법을 활용하여 이를 예측하는 방법을 제시한다. 본 연구에 활용된 데이터와 프로그램 소스코드는 Kaggle 에 공개되어 있다.
In the process of containerization, the problem of regional maldistribution of container management plan arises seriously due to several factors like a number of unbalances of containers between loading and discharging ports. This study focus on the minimizing cost. This study is composed of two models which in effective management decision making show decision of the number of containers and transfer of empty containers. One is decision of the number of containers which carriers should possess by appropriate forecasting and the other is effective management decision making which includes the transfer of empty containers on calling ports. This study has suggested as follows, First, the Time Series analysis method, especially the "Exponential Smooting with Trend Adjustment" was used to forecast the trade volumes for the designated traffic route. Second, the Time Series analysis method in deciding the optimal number of owned container at the unbalances trade situation between East Bound and West Bound service, most important variables were found such as total traffic volume, the calling interval at a port, the number of days of voyage and the length of stay on shore of container for the optimal number of owned container. Third, effective management decision making model, which makes it possible to analyze the impacts of change in important matters such as lease and positioning policy, and actually influence decision making.on making.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.