• Title/Summary/Keyword: consumption power

Search Result 5,987, Processing Time 0.027 seconds

Prediction Method about Power Consumption by Using Utilization Rate of Resources in Cloud Computing Environment (클라우드 컴퓨팅 환경에서 자원의 사용률을 이용한 소비전력 예측 방안)

  • Park, Sang-myeon;Mun, Young-song
    • Journal of Internet Computing and Services
    • /
    • v.17 no.1
    • /
    • pp.7-14
    • /
    • 2016
  • Recently, as cloud computing technologies are developed, it enable to work anytime and anywhere by smart phone and computer. Also, cloud computing technologies are suited to reduce costs of maintaining IT infrastructure and initial investment, so cloud computing has been developed. As demand about cloud computing has risen sharply, problems of power consumption are occurred to maintain the environment of data center. To solve the problem, first of all, power consumption has been measured. Although using power meter to measure power consumption obtain accurate power consumption, extra cost is incurred. Thus, we propose prediction method about power consumption without power meter. To proving accuracy about proposed method, we perform CPU and Hard disk test on cloud computing environment. During the tests, we obtain both predictive value by proposed method and actual value by power meter, and we calculate error rate. As a result, error rate of predictive value and actual value shows about 4.22% in CPU test and about 8.51% in Hard disk test.

Effect of Pulp Properties on the Power Consumption in Low Consistency Refining

  • LIU, Huan;DONG, Jixian;QI, Kai;GUO, Xiya;YAN, Ying;QIAO, Lijie;DUAN, Chuanwu;ZHAO, Zhiming
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.869-877
    • /
    • 2020
  • The power consumption in the low consistency (LC) refining is an important indicator for the optimal control of the process and it is composed of the net power and the no-load power. The refining efficiency and process characterization of LC refining are directly affected by power consumption. In this paper, the effect of pulp consistency and average fiber length on the power consumption and refining efficiency were studied through the LC refining trials conducted by an experimental disc refiner. It is found that the curve of power-gap clearance can be divided into constant power section, power reduction section, and power increase section. And the no-load power and the adjustable domain of loading applied by the refining plates will increase as the increase of pulp consistency, while the increase of net power is larger than that of no-load power which makes the increasing of refining efficiency. Meanwhile, the adjustable domain of loading applied by the refining plates can be slightly improved by increasing the average fiber length, but its effect on the no-load power in the LC refining process can be neglected. The study of power consumption in LC refining is of positive significance for the proper selection of pulp properties in LC refining, in-depth exploration of refining mechanism, and energy consumption reduction in refining.

A Study of CPLD Low Power Algorithm using Reduce Glitch Power Consumption (글리치 전력소모 감소를 이용한 CPLD 저전력 알고리즘 연구)

  • Hur, Hwa Ra
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.3
    • /
    • pp.69-75
    • /
    • 2009
  • In this paper, we proposed CPLD low power algorithm using reduce glitch power consumption. Proposed algorithm generated a feasible cluster by circuit partition considering the CLB condition within CPLD. Glitch removal process using delay buffer insertion method for feasible cluster. Also, glitch removal process using same method between feasible clusters. The proposed method is examined by using benchmarks in SIS, it compared power consumption to a CLB-based CPLD low power technology mapping algorithm for trade-off and a low power circuit design using selective glitch removal method. The experiments results show reduction in the power consumption by 15% comparing with that of and 6% comparing with that of.

Power Consumption and Sensitivity ratio of VCM-type Actuator for Disk Drive (디스크 드라이브용 VCM 액추에이터의 전력 소모와 감도비에 관한 연구)

  • Kim, Sun-Mo;Jang, Dong-Seob;Yoon, Jinwook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1207-1222
    • /
    • 2004
  • In this paper, the explicit equations on the power consumption and sensitivity ratio of VCM-type actuator for disk drive are proposed. The power consumption and sensitivity ratio is derived in frequency domain. The power consumption during the track following of the actuator can be described well in frequency domain and it can be used to calculate the total power dissipation of the actuator which is needed to compensate the tracking and focusing errors. Also, the sensitivity ratio of an actuator is derived by using the reference servo of a disk drive and will be used to optimally obtain the performances of the actuator. This sensitivity ratio can persuasively explain the basis of the target performances of the actuator in the considerations of the reference servo. The usefulness of the proposed equations for the sensitivity ratio and power consumption of an actuator is shown by a lot of simulations. In the near future, we will verify the simulation results by experiments.

Low Power Consumption Technology for Mobile Display

  • Lee, Joo-Hyung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.402-403
    • /
    • 2009
  • A variety of power reduction technologies is introduced and the benefits of the technologies are discussed. PenTile$^{(R)}$ DBLC (Dynamic Brightness LED Control) combined with SABC (Sensor-Based Adaptive Brightness Control) enables to achieve the average LED power consumption to one third. The panel power reduction of 25% can be achieved with low power driving technology, ALS (Active Level Shifter). MIP (Memory In Pixel) is expected to be useful in transflective display because the whole display area can be utilized in reflective mode with power consumption of 1mW.

  • PDF

Power Consumption Analysis of Sensor Node According to Beacon Signal Interval in IEEE 802.15.4 Wireless Star Sensor Network (IEEE 802.15.4 무선 스타 센서 네트워크에서 비콘 신호 주기에 따른 센서 노드 전력소모량 분석)

  • Yoo Young-Dae;Choi Jung-Han;Kim Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9B
    • /
    • pp.811-820
    • /
    • 2006
  • In this paper, The correlation of the power consumption of sensor node is analyzed according to the analyze parameter in IEEE 802.15.4 star sensor network. And It is studied the influence on analysis parameter. The power consumption of sensor network in transmission process and average transmission power consumption drives to numerical formula. And CSEM WiseNET system measurement value is used. As a simulation result, The power consumption of sensor node in star network consist of 10 sensor nodes is more than 20 % that in single network in average. When beacon signal interval is 0.1 second in all frequency bands, the power consumption of sensor node in up-link is more than 2.5 times that in down-link in average. When beacon signal interval is 1 second and the number of sensor nodes increases to 100 and sensing data increases to 100 byte, the power consumption of sensor node increases to 2.3 times. And The superior performance of 2.4 GHz frequency band has than 868/915 MHz frequency band up to $6{\sim}12$ times.

How to reduce the power consumption of vacuum pump in semiconductor industry (반도체 산업에 있어서의 진공 펌프 소비 전력 절감 방안)

  • Joo, J.H.;Kim, Hyo-Bae;Kim, J.C.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.4
    • /
    • pp.278-291
    • /
    • 2008
  • For the semiconductor manufacturing processes, so many vacuum systems are needed with large power consumption for vacuum pumps. Semiconductor device manufacturing makers are concerned about the power consumption and have to address this because it is related with the environmental issues. So many solutions including the design and the control of them by vacuum pump manufacturers to reduce the power consumption of vacuum pump are proposed. However, how to use vacuum pumps by users and the conditions for vacuum pump to be used are also very important to reduce the power consumption. In this article, how to reduce the power consumption of vacuum pumps is explained briefly and what the impact of semiconductor technology trend on the power consumption is considered very briefly.

Analysis of Performance Changes in Ground source Heat Pump and Air Source Heat Pump According to Global Warming (지구온난화에 따른 지열히트펌프와 공기열히트펌프의 성능 변화 분석)

  • Jin Yeong Seo;Se Hyeon Ham;Dongchan Lee
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.4
    • /
    • pp.8-17
    • /
    • 2023
  • The air temperature is gradually increasing owing to global warming, especially in summer, therefore, the performance of an air source heat pump (ASHP) is expected to be decreased. Accordingly, the performance gap between the ASHP and ground source heat pump (GSHP) should be increased, however, the quantitative comparison has not been yet investigated. In this study, impact of global warming on the performance of the ASHP and GSHP is investigated based on the climate data for 1930, 1980, and 2030. The coefficient of performance (COP) as well as annual power consumption of the ASHP and GSHP are compared and analyzed. In the case of COP, the COP of GSHP hardly changes over the years owing to the constant ground temperature, while that of ASHP decreases by 3.7% for cooling and increases by 0.71% for heating. In the case of annual power consumption, the cooling and heating power consumption of GSHP increases by 12.69% and decreases by 15.58%, respectively, over the year owing to the changes in heating and cooling loads. As for the ASHP, the cooling and heating power consumption increases by 16.64% and decreases by 17.8%, respectively. For a more accurate comparison, power consumption ratio is introduced and shows that total annual power consumption of the GSHP to ASHP decreased from 68% in 1930 to 65% in 2030. Therefore, as global warming accelerates, the effect of reducing power consumption by using GSHP compared to ASHP is expected to be increasing.

A Low Power Algorithm using State Transition Ready Method (상태 전환 준비 방법을 이용한 저전력 알고리즘)

  • Youn, Choong-Mo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.9
    • /
    • pp.971-976
    • /
    • 2014
  • In this paper, we proposed a low power algorithm using state transition ready method. The proposed algorithm defined a sleep state, a idle state and a run state for the task. A state transition occurring at the time due to the delay time created in order to reduce the power consumption state in the middle of each inserted into the ready state. The ready state considering a power consumption and a delay time in state transition. A scheduling step of performing the steps in excess of the increasing problems have the delay time is long. The power consumption increased for the operation step increase. A state transition from a sleep state with the longest delay time in operating state occurs when the state is switched by the time delay caused by the increase in operating time reduces the overall power consumption reduced. Experiments [6] were compared with the results of the power consumption. The experimental results [6] is reduced power consumption than the efficiency of the algorithm has been demonstrated.

A Study on Battery Driven Low Power Algorithm in Mobile Device (이동기기에서 배터리를 고려한 저전력 알고리즘 연구)

  • Kim, Jae-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.2
    • /
    • pp.193-199
    • /
    • 2011
  • In this paper, we proposed battery driven low power algorithm in mobile device. Algorithm the mobile devices in power of the battery for the task to perform power consumption to reduce the frequency alters. Power of the battery perform to a task power consumption of is less than the task perform to frequency the lower. Frequency control the task, depending on in the entire system devices used among the highest frequency with devices first target perform to. Frequency in the decrease the second largest frequency with of the device the frequency in changes the power consumption to calculate. The calculated consumption power the battery of level is greater than level the frequency by adjusting power consumption, lower power of the battery the task perform when you can to the frequency to adjust. Experiment the frequency by adjusting power consumption a method to reduce using [6] and in the same environment power of the battery consider the task to perform frequency were controlled. The results in [6] perform does not battery power on task operates that the result was.