• Title/Summary/Keyword: construction collapse accidents

Search Result 59, Processing Time 0.024 seconds

A Case Study of the Rock-fall Signal Lamp System for Preventing the Damage at the Cut-Slopes (사면붕괴 피해 예방을 위한 낙석신호등 설치 사례 연구)

  • Kim, Seung-Hyun;Koo, Ho-Bon;Rhee, Jong-Hyun;Baek, Yong
    • The Journal of Engineering Geology
    • /
    • v.17 no.2 s.52
    • /
    • pp.253-261
    • /
    • 2007
  • The failure of the road cut-slope due to heavy rains brings about lots of injuries and damage on national properties. KICT has developed CSMS system by means of prevention to manage the dangerous cut slopes. In spite of the continuous management the frequency of cut-slopes failure is increasing the past due to changes of earth-environment. KICT has installed the "Real-Time Monitoring System" on dangerous slopes. The operation of Real-Time Monitoring System is used as a positive system to reduce injuries and damages. However, Although the slope manager is aware of the signs collapsed in advance, it has temporal and spatial limits until the slope manager performs the works which are preventing the accidents. When real time monitoring system finds out an indication of slope collapse, the Rock-fall Signal Lamp System makes road-users indicated the risk of cut slopes. It is a kind of prevention system that it will minimize the damages of the properties as suspension of traffic automatically or passively.

Design of Facility Monitoring System Module for Ubiquitous Computing (유비쿼터스 환경의 시설물 모니터링 시스템 구현을 위한 모듈 설계)

  • Lee, Woo-Sik;Nam, Sang-Kwan
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2006.11a
    • /
    • pp.606-609
    • /
    • 2006
  • In Korean domestic construction industry, they tend to emphasize completion of structures, but on the other hand to neglect structure maintenance, before mid nineteen-nineties when consecutive structure collapse accidents arisen. Presently, facility monitoring systems are restrictively applying to large size facilities with wired method, and there are some limitations to apply these systems to small and mid size facilities throughout the country. According to the latest tendency, there is rapid growth of ubiquitous related technologies such as sensor, sensor network, wireless communications, and also there are large amount of efforts to apply these technologies to construction fields. However, these researches put values on technology itself, but researches for applications and practical use of these technologies are insufficient. Especially, researches about these technologies to apply facility monitoring field is still less unsatisfactory. Therefore, this paper will focused on methodologies about module structure by stages to realize facility monitoring systems in ubiquitous environment.

  • PDF

Analysis of the Correlation between the Thickness of Support Pin of Pipe Support and the Compressive Load (파이프 서포트의 지지핀 두께와 압축하중의 상관관계 분석)

  • Choi, Myeong Ki;Park, Jongkeun
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.4
    • /
    • pp.36-43
    • /
    • 2022
  • Generally, in construction sites, the pipe support installation workers often use support pins of 9~10 mm which are much smaller than the safety standard sizes for work convenience. Although the safety certification standard thickness of the support pins is 11 mm, and the supervisors are often indifferent to this. Hence, products with far lower performance than the pipe support safety certification value of 40,000 N, which is applied in the supporting post-structural review, are used. Accordingly, this acts as a factor causing collapse accidents in the process of pouring concrete at the construction site. Therefore, this study performed compression experiments on new and reused pipe supports to determine how the thickness of the support pins affects the structural compression performance of the pipe support by considering the thickness of the support pins as a critical variable among various factors affecting the pipe support performance. In the course of the study, the compression test of the pipe support (V2, V4) for the new products showed that only 14 (58.3%) of the total 24 samples satisfied the safety certification standard value of 40,000 N, which indicates that more thorough quality control is required in the manufacturing process. Additionally, comparing the thickness of the support pins and their fracture shape shows that the pipes with support length of 4.0 m or longer are much more affected by the buckling of the entire length than the thickness of the support pins. Of the several factors affecting the performance of reused pipe supports, it was found that, similar to the new products, the use of support pins, with thickness of 12 mm rather than 11 mm, can satisfy the safety certification value more appropriately. Therefore, regardless of the state of usage, it could be concluded that it is necessary to use 12 mm products, whose thickness is larger than that of the safety certification standard value of 11 mm, to improve the performance of the pipe supports.

Analysis of Construction Policy System for Quality Assurance of Construction Used Steels (건설용 강재의 품질확보를 위한 건설제도 분석 연구)

  • Yoon, Jongsik;Yu, Ilhan;Kim, Kyungrai;Jung, Daewoon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.1
    • /
    • pp.3-13
    • /
    • 2019
  • Recently, quality problems of steel used for construction have been raised as a cause of building collapse and safety accidents. Accordingly, it becomes more important to secure quality through material management, procurement management, and construction management for construction used steels. However, the quality management for construction used steels is confined to technical production and process control. So, it does not provide a solution of various non-conforming steel products issues. Therefore, this study suggests improvements of the construction system to secure quality of the construction used steels. Through expert interviews, we identify the items for system improvement and derive the top priority items by considering utility through a structured Analytic Hierarchy Process (AHP). It also divided the respondents into enterprise and research groups to analyze differences, implications and future improvement issues and suggest a road map. It is expected that the priority items derived in this study could be useful as a basic data for making policy decisions to assure the quality of construction used steel.

Domestic current situation and Improvement plan Consideration of Electricity Design&Supervision System (전기설계.감리제도의 국내.외 현황 및 개선방안 고찰)

  • Nam, Gi-Beom;Lee, Jong-Hyeok;Jeon, Yeong-SU;Yang, Sun-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2005.11c
    • /
    • pp.14-18
    • /
    • 2005
  • The Reason of collapse accidents, Seongsu bridge Accident in 1994 and Sampung department store Accident in 1995 and so on, that is found out to the shortage construction. Consequently, depending on orderer's self-regulating judgement the meanwhile, Electricity Technique Administration Law in 1995 owes at the public opinion to need the plan of a law system device about the electricity design and supervision and is born. This various issue problem, the combined ordering with Constructing, Electricity, fire-fighting, Information & Communication and so on, field problem, low cost services, the problem about the selection procedure of the design and supervision businessman, the business range between general and specialized, which the system appears as are carried out have been risen. Therefore basic solution plan about this have been desired. We consider a domestic current situation about an electricity design supervision system in this paper, and try to present the plan for healthy upbringing development of the electricity industry through this.

  • PDF

Control Strategy and Verification of Dual-Arm Manipulator for Disaster-Responding Special Purpose Machinery (재난 대응 특수목적기계의 양팔작업기 제어전략 및 검증)

  • Kim, Jin-Tak;Park, Sang-Sin;Han, Sang-Cheol;Kim, Jin-Hyeon;Jo, Jeong-San
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.31-37
    • /
    • 2020
  • We are concerned with the dual-arm manipulation for disaster-responding special-purpose machinery. This paper presents a control strategy for performing complex work in an irregular environment, the control algorithm, the hydraulic circuit, and the master devices. The occurrence of collapse accidents at disaster sites such as natural disasters and building collapses is increasing, which is emerging as a social problem. In particular, for the initial response, various tasks must be performed in an irregular environment. The Marionette algorithm for intuitive control of 'as if the operator's arm is moving' was presented as a control strategy for dual-arm manipulators with attachments and the prototype. Next, the hydraulic circuit, control system, and wearable-type master device presented to implement the Marionette algorithm were explained and verified through an experiment in which rebar-cutting, drum-lifting, and lifting a bottle with one arm and pouring the water into the bucket with the other arm were tested.

Reinforcement effect of surface stabilizer using surface curtain walls on aging reservoirs

  • Song, Sang-Huwon;Cho, Dae-Sung;Seo, Se-Gwan
    • Geomechanics and Engineering
    • /
    • v.28 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • In Korea, accidents related to the collapse of deteriorated aging reservoirs occur every year. The grouting method is generally applied to reinforce an aging reservoir. However, when using this method, different reinforcing effects appear depending on the ground conditions. Thus, new construction methods and materials capable of providing consistent reinforcing effects are required. In this study, the direct shear test (DST), model test, and simulation analysis were performed to evaluate the impact of surface stabilizers, generally used to reinforce roads, rivers, and slopes of roads, applied using surface curtain walls on aging reservoirs. The DST results indicate that when the surface stabilizer was mixed with in-situ soil, the increase in cohesion was the highest at a mixing ratio of 9%. No changes in the friction angle were evident; therefore, 9% was determined to be the optimal mixing ratio. In addition, the model test and simulation analysis showed that when 9% of the surface stabilizer was mixed and applied to the aging reservoir, the seepage quantity of water and the saturated area were reduced by approximately 42% and 73%, respectively. Moreover, the comprehensive analysis of results showed that the grouting method could be completely replaced by surface stabilizers applied through surface curtain walls because the technique could secure stability by decreasing the seepage in the aging reservoir.

Development of A Prototype for Wall Formwork Designs using Open BIM (개방형 BIM을 활용한 벽체 거푸집설계 프로토타입 개발)

  • Jin, Chengquan;Kim, Hyunjoo;Hyun, Chang-Taek;Han, Sang-Won
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.6
    • /
    • pp.3-13
    • /
    • 2018
  • The formwork cost amounts for a significant proportion of project construction costs. It costs 10-15% of the total construction cost and 30-40% of the frame structure construction cost. In addition, the formwork collapse accidents are frequently causing deaths in the construction industry, and thus, is known to be of relatively high degree of risk. As so, the accuracy of structural calculation and quantity take-off when planning the formwork in a construction project are a very important matter. Accordingly, this study develops a BIM based formwork design prototype, that enables the construction manager to optimize the design through applying the proposed new IFC entities associated with the formwork design. The approach proposed in this study is expected to support the construction manager with accurate quantity calculation and rapid planning and construction. Since this study considered specific small-scale buildings using Euro-form and show the possibility of utilizing BIM entities in the formwork design process, further research is recommended towards the limitations in applying the system to other types of formworks.

Establishing the Structural Criteria to install Scaffolding-Use Brackets (비계지지브라켓 유형별 구조기준 설정에 관한 실험적 연구)

  • Son, Ki-Sang;Kal, Won-Mo
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.4
    • /
    • pp.87-96
    • /
    • 1995
  • It is only three(3) years since we applied brackets for scaffolding in the construction area. Unfortunately, there is no structural criteria on how to install those in the site so far, despite the fact that those brackets have been applied into the site by the firms already. It is shown that resistant capacity of each bracket type has been investigated, analyzed from this experimental study. Accident-concerning data on construction site analyzed by the Ministry of Labor, show temporary structure involves 18.6% of the total industrial accident, which the accidents from scafold-supporting brackets have rate of 42.5% of the ones occurred from the temporary structures. There are two main aspects to be observed : one is how much resistant capacity the brackets have themselves, the other is how exactly to install those without eccentricity. But practically, nobody does check of this bolt-installing conditions in the site and no check of tightening level of nut because there is no available tool to check torque amount for this kind of nut. We just have to rely on scaffolders experience of this tightening. This experiment involves just this variable of tightness at site. Eventually this insufficient tightness causes to collapse those scaffolding structures. The bracket might have less the one than its original capacity due to this insufficient tightness. Three(3) times of PIVOT tests show that fractured condition of two(2) row brackets has occurred mostly at lower bolt due to shear force. Therefore, tightness of bracket-installing bolt, tensile strength of the bolt, shear strength of the bolt, loading condition with equal two point or inequal two point loads, are mainly investigated as variables in this study.

  • PDF

Development of disc cutter wear sensor prototype and its verification for ensuring construction safety of utility cable tunnels (전력구 터널 건설안전 확보를 위한 디스크커터 마모측정시스템 시작품 개발 및 성능검증)

  • Jung Joo Kim;Hee Hwan Ryu;Seung Woo Song;Seung Chul Do;Ji Yun Lee;Ho Young Jeong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.2
    • /
    • pp.91-111
    • /
    • 2024
  • Most of utility cable tunnels are constructed utilizing shield TBM as part of the underground transmission line project. The TBM chamber is the only space inside the tunnel that encounters rock and soil, and is the place with the highest frequency of accident exposure, such as collapse and collision accidents. Since there is currently no way to measure the disc cutter wear from outside the chamber, frequent inspection by workers is essential. Accordingly, in this study, in order to prevent safety accidents inside the TBM chamber and expect the effect of shortening the construction period by reducing the number of chamber openings, the concept of disk cutter wear measurement technology was established and a prototype was produced. By considering prior technology and determining that magnetic sensors are most suitable for the excavation environment, wear measurement sensor package were developed integrating magnetic sensors, wireless communication modules, power supply, external casing, and monitoring systems. To verify the performance of the prototype in an actual excavation environment, a full-scale tunnelling test was performed using a 3.6 m EPB shield TBM. Based on the full-scale tests, five prototypes were operated normally among eight prototypes. It was analyzed that sensor measurement, wireless communication, and durability performance were secured within a maximum thrust of 3,000 kN and a rotation speed of 1.5 RPM.