• Title/Summary/Keyword: constant curvature

Search Result 395, Processing Time 0.024 seconds

CONSTANT CURVATURES AND SURFACES OF REVOLUTION IN L3

  • Kang, Ju-Yeon;Kim, Seon-Bu
    • Honam Mathematical Journal
    • /
    • v.38 no.1
    • /
    • pp.151-167
    • /
    • 2016
  • In Minkowskian 3-spacetime $L^3$ we find timelike or spacelike surface of revolution for the given Gauss curvature K = -1, 0, 1 and mean curvature H = 0. In fact, we set up the surface of revolution with the time axis for z-axis to be able to draw those surfaces on standard pictures in Minkowskian 3-spacetime $L^3$.

On Conformally at Almost Pseudo Ricci Symmetric Mani-folds

  • De, Uday Chand;Gazi, Abul Kalam
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.3
    • /
    • pp.507-520
    • /
    • 2009
  • The object of the present paper is to study conformally at almost pseudo Ricci symmetric manifolds. The existence of a conformally at almost pseudo Ricci symmetric manifold with non-zero and non-constant scalar curvature is shown by a non-trivial example. We also show the existence of an n-dimensional non-conformally at almost pseudo Ricci symmetric manifold with vanishing scalar curvature.

SURFACES FOLIATED BY ELLIPSES WITH CONSTANT GAUSSIAN CURVATURE IN EUCLIDEAN 3-SPACE

  • Ali, Ahmed T.;Hamdoon, Fathi M.
    • Korean Journal of Mathematics
    • /
    • v.25 no.4
    • /
    • pp.537-554
    • /
    • 2017
  • In this paper, we study the surfaces foliated by ellipses in three dimensional Euclidean space ${\mathbf{E}}^3$. We prove the following results: (1) The surface foliated by an ellipse have constant Gaussian curvature K if and only if the surface is flat, i.e. K = 0. (2) The surface foliated by an ellipse is a flat if and only if it is a part of generalized cylinder or part of generalized cone.

ON G-INVARIANT MINIMAL HYPERSURFACES WITH CONSTANT SCALAR CURVATURE IN S5

  • So, Jae-Up
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.2
    • /
    • pp.261-278
    • /
    • 2002
  • Let G = O(2) $\times$ O(2) $\times$O(2) and let M$^4$be closed G-invariant minimal hypersurface with constant scalar curvature in S$^{5}$ . If M$^4$has 2 distinct principal curvatures at some point, then S = 4. Moreover, if S > 4, then M$^4$does not have simple principal curvatures everywhere.

ON A SEMI-INVARIANT SUBMANIFOLD OF CODIMENSION 3 WITH CONSTANT MEAN CURVATURE IN A COMPLEX PROJECTIVE SPACE

  • Lee, Seong-Baek
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.1
    • /
    • pp.75-85
    • /
    • 2003
  • Let M be 3 Semi-invariant submanifold of codimension 3 with lift-flat normal connection in a complex projective space. Further, if the mean curvature of M is constant, then we prove that M is a real hypersurface of a complex projective space of codimension 2 in the ambient space.

RIGIDITY CHARACTERIZATIONS OF COMPLETE RIEMANNIAN MANIFOLDS WITH α-BACH-FLAT

  • Huang, Guangyue;Zeng, Qianyu
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.401-418
    • /
    • 2021
  • For complete manifolds with α-Bach tensor (which is defined by (1.2)) flat, we provide some rigidity results characterized by some point-wise inequalities involving the Weyl curvature and the traceless Ricci curvature. Moveover, some Einstein metrics have also been characterized by some $L^{\frac{n}{2}}$-integral inequalities. Furthermore, we also give some rigidity characterizations for constant sectional curvature.

ANOTHER CHARACTERIZATION OF ROUND SPHERES

  • Lee, Seung-Won;Koh, Sung-Eun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.701-706
    • /
    • 1999
  • A characterization of geodesic spheres in the simply connected space forms in terms of the ratio of the Gauss-Kronecker curvature and the (usual) mean curvature is given: An immersion of n dimensional compact oriented manifold without boundary into the n + 1 dimensional Euclidean space, hyperbolic space or open half sphere is a totally umbilicimmersion if the mean curvature $H_1$ does not vanish and the ratio $H_n$/$H_1$ of the Gauss-Kronecker curvature $H_n$ and $H_1$ is constant.

  • PDF

GENERALIZED LANDSBERG MANIFOLDS OF SCALAR CURVATURE

  • Aurel Bejancu;Farran, Hani-Reda
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.543-550
    • /
    • 2000
  • We prove that every generalized Landsberg manifold of scalar curvature R is a Riemannian manifold of constant curvature, provided that $R\neq\ 0$.

  • PDF