
Bull. Korean Math. Soc. 49 (2012), No. 2, pp. 285–293

http://dx.doi.org/10.4134/BKMS.2012.49.2.285

HYPERSURFACES WITH CONSTANT k-TH MEAN

CURVATURE AND TWO DISTINCT PRINCIPAL

CURVATURES IN SPHERES

Jiancheng Liu and Yan Wei

Abstract. In this paper, we investigate the hypersurface M in a unit
sphere with constant k-th mean curvature and two distinct principal cur-
vatures, and characterize such a hypersurface.

1. Introduction and main result

Let M be an n-dimensional hypersurface in an (n + 1)-dimensional unit
sphere Sn+1(1). It is well known that a compact minimal hypersurface M with

S = n in Sn+1(1) is isometric to a Clifford torus S1(
√

1
n ) × Sn−1(

√
n−1
n ),

where S is the squared norm of the second fundamental form of the hypersur-
face (cf. [5], [7], [8]). In 1970, Otsuki [10] investigated the converse problem

by using differential equation and proved that Riemannian product Sk(
√

k
n )×

Sn−k(
√

n−k
n ) is the only compact minimal hypersurface in Sn+1(1) with two

distinct principal curvatures whose multiplicities are greater than 1. Further-
more, for compact minimal hypersurfaces with two distinct principal curva-
tures, one of which is simple, Otsuki also constructed infinitely many immersed

minimal hypersurfaces other than the Clifford torus S1(
√

1
n ) × Sn−1(

√
n−1
n )

which are not congruent to each other.
In order to characterize the geometric structure of M , it is natural to add

some additional geometrical or topological conditions on M . Based on this
consideration, hypersurfaces immersed in Sn+1(1) with constant mean curva-
ture or constant scalar curvature have been into our insight and have its own
interest. This class of hypersurfaces has been studied by many authors and
obtained a series of rigidity or classification results, see [1], [2], [4], [6], [9], [10],
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[11], [12] and the references therein. For example, Wei [11] studied the hyper-
surfaces in Sn+1(1) with constant mean curvature and two distinct principal
curvatures and proved that:

Theorem A (Wei [11]). Let M be an n-dimensional (n ≥ 3) connected com-
plete hypersurface in Sn+1(1) with constant mean curvature H and two distinct
principal curvatures, one of which is simple. If the squared norm of the second
fundamental form S of M satisfies

S ≤ n+
n3H2

2(n− 1)
− n(n− 2)

2(n− 1)

√
n2H4 + 4(n− 1)H2

or

S ≥ n+
n3H2

2(n− 1)
+

n(n− 2)

2(n− 1)

√
n2H4 + 4(n− 1)H2,

then M is isometric to the Riemannian product S1(a)×Sn−1(
√
1− a2), where

a2 =
2+nH2±

√
n2H4+4(n−1)H2

2n(1+H2) .

Concerning the hypersurfaces in Sn+1(1) with constant scalar curvature and
two distinct principal curvatures, Wei [12] and Cheng [4] proved that:

Theorem B (Wei [12], Cheng [4]). Let M be an n-dimensional (n ≥ 3)
connected complete hypersurface in Sn+1(1) with constant scalar curvature
n(n − 1)r (r ̸= n−2

n−1 is the normalized scalar curvature of M) and two dis-
tinct principal curvatures, one of which is simple. If

S ≤ (n− 1)
n(r − 1) + 2

n− 2
+

n− 2

n(r − 1) + 2

or

S ≥ (n− 1)
n(r − 1) + 2

n− 2
+

n− 2

n(r − 1) + 2
,

then M is isometric to the Riemannian product S1(
√
1− a2)×Sn−1(a), where

a2 = n−2
nr .

Furthermore, the higher order mean curvature extends naturally the mean
curvature and the scalar curvature as its special cases. So, studying the struc-
tures of hypersurfaces in Sn+1(1) with constant k-th mean curvature Hk (see
the Section 2 for definition) is another important research interest. For in-
stance, in [13], Wei characterized the hypersurfaces with Hk = 0 and obtained:

Theorem C (Wei [13]). Let M be an n-dimensional (n ≥ 3) connected com-
plete hypersurface in Sn+1(1) with constant k-th mean curvature Hk = 0 and
two distinct principal curvatures, one of which is simple.

(i) If S ≥ n(k2−2k+n)
k(n−k) , then S = n(k2−2k+n)

k(n−k) , and M is isometric to S1
(√

k
n

)
×Sn−1

(√
n−k
n

)
.
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(ii) If S ≤ n(k2−2k+n)
k(n−k) , then S = n(k2−2k+n)

k(n−k) , and M is isometric to S1
(√

k
n

)
×Sn−1

(√
n−k
n

)
.

In this paper, we consider n-dimensional hypersurfaces with k-th mean cur-
vature Hk = const. > 0 in a sphere Sn+1(c) with constant curvature c. In fact,
we prove the following result.

Theorem 1. Let M be an n-dimensional (n ≥ 3) connected complete hyper-
surface in Sn+1(c) with constant k-th (1 ≤ k < n) mean curvature Hk(> 0)
and two distinct principal curvatures, one of which is simple. If the squared
norm of the second fundamental form S of M satisfies

(1) S ≥ (n− 1)t
2
k
0 + c2t

− 2
k

0 ,

or

(2) S ≤ (n− 1)t
2
k
0 + c2t

− 2
k

0 ,

then M is isometric to the Riemannian product S1(c1)×Sn−1(c2), where c1 > 0,
c2 > 0, 1

c1
+ 1

c2
= 1

c , and t0 is the positive real root of the equation PHk
(t) ≡

ckt
k−2
k − (n− k)t+ nHk = 0 (t > 0).

Remark 1. In Section 3, we will prove in Lemma 4 that the equation PHk
(t) = 0

has actually a unique positive real root.

Remark 2. When k = 1, H1 is exactly the mean curvature H. Let c = 1,
then PH1(t) ≡ 1

t − (n − 1)t + nH = 0 (t > 0) has one positive real root

t0 =
nH+

√
n2H2+4(n−1)

2(n−1) and Eq.(2) reduces to

S ≤ n+
n3H2

2(n− 1)
− n(n− 2)

2(n− 1)

√
n2H4 + 4(n− 1)H2.

Therefore, Theorem 1 contains partially Theorem A as its special case. Mean-
while, Eq.(1) reduces to

S ≥ n+
n3H2

2(n− 1)
− n(n− 2)

2(n− 1)

√
n2H4 + 4(n− 1)H2.

It is obvious that the lower bound of S in Theorem 1 is less than that in
Theorem A, this implies that Theorem 1 improves Theorem A partially.

Remark 3. When k = 2, we have H2 = r − c > 0. Let c = 1, then M has
constant positive second order mean curvature H2 if and only if M has constant
scalar curvature r and r > 1, this implies that r > 1 − 2

n , and r ̸= n−2
n−1 . In

this case, the equation PH2(t) ≡ −(n− 2)t+ nH2 + 2 = 0 (t > 0) has a unique

positive real root t0 = n(r−1)+2
n−2 . Then, (1), (2) reduce to, respectively,

S ≥ (n− 1)
n(r − 1) + 2

n− 2
+

n− 2

n(r − 1) + 2
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and

S ≤ (n− 1)
n(r − 1) + 2

n− 2
+

n− 2

n(r − 1) + 2
.

We infer that Theorem 1 also contains Theorem B ([12, Theorem 1.3] and [4,
Theorem 3.1]) as its special cases.

2. Preliminaries and lemmas

Let M be an n-dimensional hypersurface in an (n+1)-dimensional Euclidean
sphere Sn+1(c) with constant curvature c. We choose a local orthonormal frame
field {e1, . . . , en+1} in Sn+1(c), such that e1, . . . , en are tangent to M , en+1 is
the unit normal vector field. Let {ω1, . . . , ωn+1} denote the corresponding dual
coframe field. Using the same symbols as in [10], then the structure equations
and the Gauss equations of M can be written as

dωi =
∑
j

ωij ∧ ωj , ωij + ωji = 0,

dωij =
∑
k

ωik ∧ ωkj −
1

2

∑
k,l

Rijklωk ∧ ωl,

Rijkl = c(δikδjl − δilδjk) + (hikhjl − hilhjk),

where hij denotes the components of the second fundamental form of M . The
covariant derivative hijk of hij is defined by

(3)
∑
k

hijkωk = dhij +
∑
k

hkjωki +
∑
k

hikωkj ,

then, we obtain the Codazzi equation

(4) hijk = hikj .

For 1 ≤ k ≤ n, the k-th mean curvature Hk of M is defined by

(5)

(
n

k

)
Hk =

∑
1≤i1<···<ik≤n

λi1 · · ·λik ,

where
(
n
k

)
= n!

k!(n−k)! , λi (1 ≤ i ≤ n) are the principal curvatures of M . In

particular, when k = 1, H1 = H is nothing but the mean curvature of M ; while
k = 2, a simple calculation by using Gauss equations of M yields H2 = r − c,
where r is the normalized scalar curvature of M . So we know that the k-th
mean curvature Hk generalizes the mean curvature and the scalar curvature
naturally.

Now, we assume that M is a hypersurface in Sn+1(c) with constant k-th
mean curvature Hk(> 0) and two distinct principal curvatures λ (multiplicity
n − 1) and µ (multiplicity 1). Choosing a proper frame field {e1, . . . , en+1}
in Sn+1(c) such that hij = λiδij , and taking the convention on the range of
indices that 1 ≤ i, j, k, . . . ≤ n, 1 ≤ a, b, c, . . . ≤ n− 1, then

(6) hab = λδab, hnn = µ, han = 0.
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On the other hand, by virtue of the definition of Hk, we have from (5) that(
n
k

)
Hk =

(
n−1
k

)
λk +

(
n−1
k−1

)
λk−1µ, equivalently,

(7) λk−1((n− k)λ+ kµ) = nHk.

Notice our assumption Hk > 0, (7) implies λ ̸= 0 and

(8) µ =
nHk − (n− k)λk

kλk−1
,

(9) λ− µ = n
λk −Hk

kλk−1
̸= 0.

By means of the following Lemma 3, together with (3), (4), (6) and (9), making
use of the similar methods to [10], we get

(10) ωan =
λ,n

λ− µ
ωa =

kλk−1λ,n

n(λk −Hk)
ωa =

d{log |λk −Hk|
1
n }

ds
ωa.

Taking exterior differentiation of (10), we have

(11)

dωan =

−d2{log |λk −Hk|
1
n }

ds2
+

[
d{log |λk −Hk|

1
n }

ds

]2
ωa ∧ ds

+
d{log |λk −Hk|

1
n }

ds

n−1∑
b=1

ωab ∧ ωb.

Alternatively, from (10), structure equations and Gauss equations of M , a
direct calculation gives

(12) dωan =
d{log |λk −Hk|

1
n }

ds

n−1∑
b=1

ωab ∧ ωb − (λµ+ c)ωa ∧ ds.

Comparing (11) with (12), we get the following lemma.

Lemma 2. If M is an n-dimensional connected complete hypersurface in
Sn+1(c) with constant k-th mean curvature Hk(> 0) and two distinct prin-
cipal curvatures λ and µ with multiplicities n− 1 and 1, respectively. Then M
is the locus of a family of moving submanifolds Mn−1

1 (s) (where the parameter
s is the arc length of the integral curves of µ), and λk, Hk satisfy the following
differential equation of order 2 :

−d2{log |λk −Hk|
1
n }

ds2
+

{
d{log |λk −Hk|

1
n }

ds

}2

+ (λµ+ c) = 0.

Lemma 3 (Otsuki [10]). Let M be a hypersurface in a sphere Sn+1(c) such
that the multiplicities of the principal curvatures are constants, then the dis-
tribution of the space of the principal vectors corresponding to each principal
curvature is completely integrable. In particular, if the multiplicity of a prin-
cipal curvature is greater than 1, then this principal curvature is constant on
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each integral submanifold of the corresponding distribution of the space of the
principal vectors.

3. Proof of the main theorem

Define a positive function w(s) over s ∈ (−∞,+∞) by w(s) = |λk −Hk|−
1
n ,

from (8) and Lemma 2, we get

(13)
d2w

ds2
+ w

ckλk−2 − (n− k)λk + nHk

kλk−2
= 0.

In order to prove our main theorem, we will prove, at first, that d2w
ds2 ≥ 0 or

d2w
ds2 ≤ 0 by using the equation (13), then to analysis the monotonicity of the

functions dw
ds and w(s). As a result, we will know that w(s) is a constant.

According to the results due to Cartan [3], taking similar arguments as in [10],
we will complete the proof of the main theorem. Whatever, we prove firstly
the following lemmas.

Lemma 4. Let PHk
(t) = ckt

k−2
k − (n − k)t + nHk, where c > 0, t > 0,

1 ≤ k < n, n ≥ 3, and Hk = const. > 0. Then PHk
(t) has a unique positive

real root t0. Furthermore,
(1) When 0 < t ≤ t0, we have PHk

(t) ≥ 0;
(2) When t ≥ t0, we have PHk

(t) ≤ 0.

Proof. (i) When k = 1, we have
dPH1

(t)

dt = −ct−2 − (n− 1) < 0, which implies
that PH1(t) is a strictly monotone decreasing function. The unique positive

solution of PH1(t) = 0 is t0 =
nH1+

√
n2H2

1+4(n−1)c

2(n−1) , thus PH1(t) ≥ 0 for 0 < t ≤
t0 and PH1(t) ≤ 0 for t ≥ t0.

(ii) When k = 2, by making use of the similar methods to (i), we reach the
conclusion.

(iii) When k ≥ 3, a direct calculation then gives
dPHk

(t)

dt = c(k−2)t−
2
k −(n−

k) and
d2PHk

(t)

dt2 = −2(k−2)
k ct−

2+k
k < 0, which implies that

dPHk
(t)

dt is a strictly

monotone decreasing function of t. Put
dPHk

(t)

dt = 0, we get t1 = ( n−k
c(k−2) )

− k
2 >

0. Thus, if 0 < t < t1, then
dPHk

(t)

dt > 0 and PHk
(t) is strictly monotone

increasing. If t > t1,
dPHk

(t)

dt < 0 and PHk
(t) is strictly monotone decreasing.

Furthermore, since limt→0+ PHk
(t) = nHk > 0, limt→+∞ PHk

(t) = −∞, from
the continuous property of PHk

(t), we infer that PHk
(t) has a unique positive

real root, denoted by t0. Finally, we conclude that PHk
(t) ≥ 0 for 0 < t ≤ t0

and PHk
(t) ≤ 0 for t ≥ t0, which completes the proof of Lemma 4. □

Lemma 5. Let f(t) = 1

k2t
2k−2

k

{(n − 1)k2t2 + (nHk − (n − k)t)2} for t > 0,

Hk = const. > 0, 1 ≤ k < n and n ≥ 3, then f(t0) = (n− 1)t
2
k
0 + c2t

− 2
k

0 , where
t0 is the positive real root of PHk

(t) = 0. Furthermore, if t ≥ Hk, f(t) is a
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monotone increasing function; if 0 < t ≤ Hk, f(t) is a monotone decreasing
function.

Proof. Notice that PHk
(t0) = ckt

k−2
k

0 − (n− k)t0 + nHk = 0, so

f(t0) =
1

k2t
2k−2

k
0

{
(n− 1)k2t20 +

(
(ckt

k−2
k

0 − (n− k)t0 + nHk)− ckt
k−2
k

0

)2}
=

1

k2t
2k−2

k
0

{
(n− 1)k2t20 + (−ckt

k−2
k

0 )2
}

= (n− 1)t
2
k
0 + c2t

− 2
k

0 .

Furthermore, we have

df(t)

dt
=

2t
2−3k

k

k3

{
(n2 − 2nk + nk2)t2 + n(k − 2)(n− k)Hkt+ (1− k)n2H2

k

}
.

Putting g(t) ≡ (n2−2nk+nk2)t2+n(k−2)(n−k)Hkt+(1−k)n2H2
k , a direct

calculation gives that g(Hk) = 0. We will discuss the monotone property of
f(t) for k = 1 and k ≥ 2 separately.

(1) When k = 1, g(t) = n(n− 1)t(t−H1). Henceforth, if 0 < t ≤ H1, then

g(t) ≤ 0 and df(t)
dt ≤ 0, it follows that f(t) is a decreasing function; if t ≥ H1,

then g(t) ≥ 0 and df(t)
dt ≥ 0, this leads to f(t) be an increasing function.

(2) When k ≥ 2, we infer that dg(t)
dt = 2n(k2−2k+n)t+n(k−2)(n−k)Hk > 0,

so g(t) is strictly monotone increasing and Hk is the only zero point of g(t).

Hence, if 0 < t ≤ Hk, then g(t) ≤ 0, df(t)
dt ≤ 0 and f(t) is a decreasing function;

if t ≥ Hk, then g(t) ≥ 0, df(t)
dt ≥ 0 and f(t) is an increasing function. This

completes the proof of Lemma 5. □

Proof of Theorem 1. Put t = Hk, then PHk
(Hk) = ckH

k−2
k

k + kHk > 0, we
know Hk < t0 from the monotone property of PHk

(t) (Lemma 4(1)). We also
assert that λk > Hk. In fact, if on the contrary λk < Hk (because of λk ̸= Hk

from (9)), then λk < t0. Review the process of the proof of Lemma 4, it is not
difficult to find that PHk

(λk) > 0. Recall the definition of PHk
(t), (13) can be

rewritten as

(14)
d2w

ds2
+ w

PHk
(λk)

kλk−2
= 0,

therefore d2w
ds2 < 0, this implies dw

ds is a strictly monotone decreasing function

of t, and it has at most one zero point for s ∈ (−∞,+∞). If dw
ds has no zero

point in (−∞,+∞), then w(s) is a monotone function in s ∈ (−∞,+∞); if dw
ds

has one zero point s0 in (−∞,+∞), then w(s) is a monotone function both
in (−∞, s0] and [s0,+∞). Since w(s) is bounded ([13]), we know that both
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lims→−∞ w(s) and lims→+∞ w(s) exist and we have

lim
s→−∞

dw(s)

ds
= lim

s→+∞

dw(s)

ds
= 0.

This is impossible because dw(s)
ds is a strictly monotone decreasing function.

Therefore we prove the assertion that λk > Hk. By the way, keep in mind that
Hk < t0 as we have proved at the beginning of the proof of Theorem 1.

Evaluating the function f(t) (defined in Lemma 5) at λk and using (7), we
easily obtain

f(λk) =
1

k2λ2k−2
{(n− 1)k2λ2k + [nHk − (n− k)λk]2}

= (n− 1)λ2 +
1

k2λ2k−2
k2λ2k−2µ2 = S.

Case 1. If the assumption (1) holds in Theorem 1, i.e., S = f(λk) ≥ f(t0),
we know from Lemma 5 that λk ≥ t0, thus Lemma 4 tells us PHk

(λk) ≤
PHk

(t0) = 0. So we have d2w
ds2 ≥ 0 from (14), this means that dw

ds is a monotone
increasing function of s. Therefore, w(s) must be monotonic when s tends to
infinity. On the other hand, since w(s) is bounded (cf. [13]), we find that both
lims→−∞ w(s) and lims→+∞ w(s) exist and we have

lim
s→−∞

dw(s)

ds
= lim

s→+∞

dw(s)

ds
= 0.

By the monotonicity of dw(s)
ds , we see that dw

ds ≡ 0, thus w(s) is a constant.

Then, according to w(s) = |λk−Hk|−
1
n and (8), we infer that λ, µ are constants

on M . Therefore, we know from the results due to Cartan in [3] that M
is an isoparametric hypersurface, it is isometric to the Riemannian product
S1(c1)× Sn−1(c2), where c1 > 0, c2 > 0, 1

c1
+ 1

c2
= 1

c .

Case 2. If the assumption (2) holds in Theorem 1, i.e., S = f(λk) ≤ f(t0),
we obtain from Lemma 5 again that λk ≤ t0, thus PHk

(λk) ≥ 0 by Lemma 4.

So we have d2w
ds2 ≤ 0, this means that dw

ds is a monotone increasing function of
s. By the similar discussion to the Case 1, we know that λ, µ are constants on
M and M is an isoparametric hypersurface, it is isometric to the Riemannian
product S1(c1)× Sn−1(c2). We complete the proof of Theorem 1. □
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