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HYPERSURFACES WITH CONSTANT k-TH MEAN
CURVATURE AND TWO DISTINCT PRINCIPAL
CURVATURES IN SPHERES

JIANCHENG L1U AND YAN WEI

ABSTRACT. In this paper, we investigate the hypersurface M in a unit
sphere with constant k-th mean curvature and two distinct principal cur-
vatures, and characterize such a hypersurface.

1. Introduction and main result

Let M be an n-dimensional hypersurface in an (n + 1)-dimensional unit
sphere S"*1(1). It is well known that a compact minimal hypersurface M with

S = n in S"*1(1) is isometric to a Clifford torus Sl(\/%) x Snl(y/n=h),

where S is the squared norm of the second fundamental form of the hypersur-
face (cf. [5], [7], [8]). In 1970, Otsuki [10] investigated the converse problem

by using differential equation and proved that Riemannian product S k(\/% ) X

Sn=k(y/™=E) is the only compact minimal hypersurface in S™"*!(1) with two
distinct principal curvatures whose multiplicities are greater than 1. Further-
more, for compact minimal hypersurfaces with two distinct principal curva-
tures, one of which is simple, Otsuki also constructed infinitely many immersed

minimal hypersurfaces other than the Clifford torus S 1(\/I) x SPTL( /L)y

n n
which are not congruent to each other.

In order to characterize the geometric structure of M, it is natural to add
some additional geometrical or topological conditions on M. Based on this
consideration, hypersurfaces immersed in S"*1(1) with constant mean curva-
ture or constant scalar curvature have been into our insight and have its own
interest. This class of hypersurfaces has been studied by many authors and
obtained a series of rigidity or classification results, see [1], [2], [4], [6], [9], [10],
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[11], [12] and the references therein. For example, Wei [11] studied the hyper-
surfaces in S™*1(1) with constant mean curvature and two distinct principal
curvatures and proved that:

Theorem A (Wei [11]). Let M be an n-dimensional (n > 3) connected com-
plete hypersurface in S"T1(1) with constant mean curvature H and two distinct
principal curvatures, one of which is simple. If the squared norm of the second
fundamental form S of M satisfies

SH? n(n—2

n ) 57 2
S§n+2(n_ )—2(n_1)\/nH +4(n—1)H

or

n®H? n(n —2)
S >
S D T 3w
then M is isometric to the Riemannian product S*(a) x S"1(v/1 — a?), where

o _ 2+nH?+y/n2H44+4(n—1)H?
a = 2n(11H?) .

Vn2H* +4(n — 1)H?,

Concerning the hypersurfaces in S"*1(1) with constant scalar curvature and
two distinct principal curvatures, Wei [12] and Cheng [4] proved that:

Theorem B (Wei [12], Cheng [4]). Let M be an n-dimensional (n > 3)
connected complete hypersurface in S"T1(1) with constant scalar curvature
n(n — )r (r # =2 is the normalized scalar curvature of M) and two dis-
tinct principal curvatures, one of which is simple. If

nir—1)+2 n—2
n—2 nir—1)+2

S<(n-1)

or
n(r—1)+2 n—2
n—2 n(r—1)+2’

then M is isometric to the Riemannian product S*(v/1 — a2?) x S"~1(a), where

a2 _ n=2 .
nr

S>(n-1)

Furthermore, the higher order mean curvature extends naturally the mean
curvature and the scalar curvature as its special cases. So, studying the struc-
tures of hypersurfaces in S"*1(1) with constant k-th mean curvature Hj, (see
the Section 2 for definition) is another important research interest. For in-
stance, in [13], Wei characterized the hypersurfaces with Hy, = 0 and obtained:

Theorem C (Wei [13]). Let M be an n-dimensional (n > 3) connected com-
plete hypersurface in S™T1(1) with constant k-th mean curvature Hj, = 0 and
two distinct principal curvatures, one of which is simple.

(i) If S > %, then S = %, and M is isometric to Sl(\/%)

xSy f22E).
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(i) I § < %’ then S = %, and M is isometric to Sl(\/%)

X877 (y/25).

In this paper, we consider n-dimensional hypersurfaces with k-th mean cur-
vature Hj, = const. > 0 in a sphere S"!(c) with constant curvature c. In fact,
we prove the following result.

Theorem 1. Let M be an n-dimensional (n > 3) connected complete hyper-
surface in S"T1(c) with constant k-th (1 < k < n) mean curvature Hyp(> 0)
and two distinct principal curvatures, one of which is simple. If the squared
norm of the second fundamental form S of M satisfies

2 2_3
(1) S > (n— Dt + 2t ",
or

2 2_2
2) S < (n— Dt + 2t ",

then M is isometric to the Riemannian product S*(c1)xS"~1(cp), where c; > 0,

co >0, é + é = %, and to is the positive real Toot of the equation P, (t) =

ckt" T — (n—k)t+nH, =0 (t > 0).

Remark 1. In Section 3, we will prove in Lemma 4 that the equation Py, (t) = 0
has actually a unique positive real root.

Remark 2. When k = 1, H; is exactly the mean curvature H. Let ¢ = 1,

then Py, (t) = 7+ — (n — 1)t + nH = 0 (t > 0) has one positive real root

to = nHAN/WH A=) g Eq.(2) reduces to

2(n—1)

n®H? n(n —2)
< — 2H4 + 4(n — 1)H?2.
S<ntgr Ty ~ g VI H HAn - 1)
Therefore, Theorem 1 contains partially Theorem A as its special case. Mean-
while, Eq.(1) reduces to
n®H? n(n —2)
> - 2H4 +4(n — 1)HZ2.
S2nt 5oy " g o VI H A D)
It is obvious that the lower bound of S in Theorem 1 is less than that in
Theorem A, this implies that Theorem 1 improves Theorem A partially.

Remark 3. When k = 2, we have Hy, = r —¢ > 0. Let ¢ = 1, then M has
constant positive second order mean curvature Hs if and only if M has constant
scalar curvature r and r > 1, this implies that r > 1 — %, and r # Z—ﬁ In

this case, the equation P, (t) = —(n — 2)t +nHy +2 = 0 (¢ > 0) has a unique
positive real root tg = % Then, (1), (2) reduce to, respectively,

n(r—1)+2 n—2
n—2 n(r—1)+2

S>(n—1)
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and
n(r—1)+2 n—2

n—2 n(r—1)+2
We infer that Theorem 1 also contains Theorem B ([12, Theorem 1.3] and [4,
Theorem 3.1]) as its special cases.

S<(n-1)

2. Preliminaries and lemmas

Let M be an n-dimensional hypersurface in an (n+1)-dimensional Euclidean
sphere S"*1(c) with constant curvature c. We choose a local orthonormal frame
field {e1,...,ent1} in S 1(c), such that ey, ..., e, are tangent to M, e, is
the unit normal vector field. Let {w,...,wp+1} denote the corresponding dual
coframe field. Using the same symbols as in [10], then the structure equations
and the Gauss equations of M can be written as

dw; = E wij N\ Wy, wij—I—wji:O,
J

1
dwij = win Awkj — 3 > Rijrawr Awi,
k k,l
Rijki = c(0ir0j1 — 0510,%) + (hirhji — hahjk),
where h;; denotes the components of the second fundamental form of M. The
covariant derivative h;ji, of h; is defined by

(3) Z hijrwy = dhij + Z hijwri + Z hikwij,
% % %

then, we obtain the Codazzi equation
(4) hiji = Rikj-
For 1 < k < n, the k-th mean curvature Hy of M is defined by

(5) (Z)sz S A

1<iy << <n

where (Z) = ﬁlk),, Ai (1 < i < n) are the principal curvatures of M. In
particular, when k = 1, Hy; = H is nothing but the mean curvature of M; while
k = 2, a simple calculation by using Gauss equations of M yields Hy = r — c,
where 7 is the normalized scalar curvature of M. So we know that the k-th
mean curvature Hj generalizes the mean curvature and the scalar curvature
naturally.

Now, we assume that M is a hypersurface in S"™!(c) with constant k-th
mean curvature Hy(> 0) and two distinct principal curvatures A (multiplicity
n — 1) and p (multiplicity 1). Choosing a proper frame field {e,...,ep+1}
in S"*1(c) such that hij = Xidsj, and taking the convention on the range of
indices that 1 < 4,5, k,...<n, 1 <a,b,c,... <n—1, then

(6) hab - >\6ab7 hnn =M, han =0.
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On the other hand, by virtue of the definition of Hj, we have from (5) that
(O He = ("N + (371 ALy, equivalently,
(7) NH(n = k)X + kp) = nH.
Notice our assumption Hy > 0, (7) implies A # 0 and
nHy, — (n — k)\*

(8) p= T ,
\e— Hy,

By means of the following Lemma 3, together with (3), (4), (6) and (9), making
use of the similar methods to [10], we get

A EXE=IN d{log |\F — Hy|}
10 an = : a = : a = a-:
(10) “ /\—,uw n()\k—Hk)w ds “
Taking exterior differentiation of (10), we have
2(log |\F — H[% AT
dony = ~ d{log |\* — Hy|=} n d{log |\* — Hg|# } o A ds
ds? ds

(11)

d{log |N* — Hy|7} {2
+ ds bz_;wab/\wb.

Alternatively, from (10), structure equations and Gauss equations of M, a
direct calculation gives

d{log |\F — Hy %} =2
= {log | k }ZwabAwb—(Au+c)wa/\ds.

12 an
(12) dw o
b=1

Comparing (11) with (12), we get the following lemma.

Lemma 2. If M is an n-dimensional connected complete hypersurface in
S"tL(e) with constant k-th mean curvature Hy(> 0) and two distinct prin-
cipal curvatures A and p with multiplicities n — 1 and 1, respectively. Then M
is the locus of a family of moving submanifolds M} (s) (where the parameter
s is the arc length of the integral curves of j1), and \¥, Hy, satisfy the following
differential equation of order 2 :

_ d*{log |\F — Hy[ 7} n d{log |\¥ — Hy| =
ds? ds

}} + (A +c¢)=0.

Lemma 3 (Otsuki [10]). Let M be a hypersurface in a sphere S"T1(c) such
that the multiplicities of the principal curvatures are constants, then the dis-
tribution of the space of the principal vectors corresponding to each principal
curvature is completely integrable. In particular, if the multiplicity of a prin-
cipal curvature is greater than 1, then this principal curvature is constant on
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each integral submanifold of the corresponding distribution of the space of the
principal vectors.

3. Proof of the main theorem

Define a positive function w(s) over s € (—oo, +00) by W(s) = |AF — Hy| "%,
from (8) and Lemma 2, we get

d*w _ ckN 2 — (n— B)AF + nH,

@er k‘/\k_g =0.

(13)

In order to prove our main theorem, we will prove, at first, that ‘(ifg >0 or

ﬁ? < 0 by using the equation (13), then to analysis the monotonicity of the

functions 9% and w(s). As a result, we will know that w(s) is a constant.
According to the results due to Cartan [3], taking similar arguments as in [10],
we will complete the proof of the main theorem. Whatever, we prove firstly

the following lemmas.

Lemma 4. Let Py, () = cht' T — (n — k)t + nHy, where ¢ > 0, t > 0,
1<k<mn,n>3, and H, = const. > 0. Then Py, (t) has a unique positive
real root ty. Furthermore,

(1) When 0 <t <tg, we have Py, (t) > 0;

(2) When t > to, we have P, (t) <O0.

Proof. (i) When k = 1, we have %%(t) = —ct™2 — (n — 1) < 0, which implies

that Py, (t) is a strictly monotone decreasing function. The unique positive
solution of Py, (t) = 0is tg = UELERAY ;L(Z:i%l—;‘l(n_l)c, thus Py, (t) > 0for 0 < ¢ <
to and Py, (t) <0 for t > ty.
(ii) When k = 2, by making use of the similar methods to (i), we reach the
conclusion.
dPy, (t)

(iii) When & > 3, a direct calculation then gives —3——= = c(k—2)t~% —(n—

2
k) and d ZI:S' © _ —Q(kk_Q) o= F < 0, which implies that dﬂéi’;(t) is a strictly
n—k

monotone decreasing function of ¢. Put drﬁi’;(t) =0, we get t; = (m)’% >

0. Thus, if 0 < t < t1, then AP, ()

dt
increasing. If ¢ > ¢, dPIé’; @ <0 and Py, (¢) is strictly monotone decreasing.

Furthermore, since lim;_,o+ Py, (t) = nHy > 0, lim; 4o Pp, (t) = —o0, from
the continuous property of Py, (t), we infer that Pp, () has a unique positive
real root, denoted by to. Finally, we conclude that Pg, () > 0 for 0 < ¢t < ¢y
and P, (t) <0 for t > ¢y, which completes the proof of Lemma 4. O

> 0 and Pp,(t) is strictly monotone

Lemma 5. Let f(t) = —ar=—={(n — DE*? + (nHy, — (n — k)t)%} for t > 0,
k2t %

2 _2
Hy =const. >0, 1 <k <n andn >3, then f(to) = (n — 1)t§ + *ty *, where
to is the positive real Toot of Py, (t) = 0. Furthermore, if t > Hy, f(t) is a
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monotone increasing function; if 0 < t < Hy, f(t) is a monotone decreasing
function.

ko2
Proof. Notice that Py, (to) = ckty® — (n—k)to +nHy =0, so

1 2,2 k2 2\
fto) = W{(n — 1)Kt + ((ckty® — (n — k)to +nHyg) — ckty® ) }
k2t, *
1 B2
= W{(n — 1)E*tg + (—ckty* )2}
K2ty *

2 _2
=(n—t§ +c*ty *.

Furthermore, we have

2—3k

d{igf) - Ztk; {(n2 — Onk + nk?)t2 + n(k — 2)(n — k) Hyt + (1 — k)n2H,§}.

Putting g(t) = (n? —2nk +nk?)t> + n(k—2)(n— k)Hyt + (1 — k)n?HZ, a direct

calculation gives that g(Hy) = 0. We will discuss the monotone property of
f(t) for k =1 and k > 2 separately.

(1) When k =1, g(t) = n(n — 1)t(t — Hy). Henceforth, if 0 < ¢t < Hy, then

g(t) <0 and % <0, it follows that f(t) is a decreasing function; if ¢ > Hy,

then g(t) > 0 and d{j(tt) > 0, this leads to f(¢) be an increasing function.

(2) When k£ > 2, we infer that dﬂ—(tt) = 2n(k*—2k+n)t+n(k—2)(n—k)Hy, > 0,
so g(t) is strictly monotone increasing and Hy, is the only zero point of g(t).
Hence, if 0 < ¢ < Hy, then g(t) <0, %Ef) < 0and f(t) is a decreasing function;

if t > Hy, then g(t) > 0, d{igt) > 0 and f(t) is an increasing function. This

completes the proof of Lemma 5. (]

Proof of Theorem 1. Put t = Hy, then Py, (Hy) = ckH,:Tz + kH, > 0, we
know H} < to from the monotone property of Py, (t) (Lemma 4(1)). We also
assert that A* > Hj,. In fact, if on the contrary N < Hy, (because of A\F #+ Hy,
from (9)), then \* < ¢,. Review the process of the proof of Lemma 4, it is not
difficult to find that Pg, (A\¥) > 0. Recall the definition of Py, (t), (13) can be
rewritten as
d*w Py, (\

therefore % < 0, this implies %—f is a strictly monotone decreasing function
of t, and it has at most one zero point for s € (—oo,+00). If € has no zero
point in (—oo, +00), then W(s) is a monotone function in s € (—o0, +00); if 4=
has one zero point sg in (—o0,+00), then w(s) is a monotone function both
in (—o0, sp] and [sg, +00). Since W(s) is bounded ([13]), we know that both
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limg—, — oo W(s) and lims_, 4o, W(s) exist and we have

fim $26) g, 9006
S§——00 dS s——+o0 dS

This is impossible because dmdis) is a strictly monotone decreasing function.

Therefore we prove the assertion that \* > Hj,. By the way, keep in mind that
Hj, <ty as we have proved at the beginning of the proof of Theorem 1.

Evaluating the function f(t) (defined in Lemma 5) at \* and using (7), we
easily obtain

FOF) = m{(n — DE2N* 4 [nHy, — (n— k)A})?)

=(n—1)\+ E2N2k=2,2 = 8.

L2 \2h—2
Case 1. If the assumption (1) holds in Theorem 1, i.e., S = f(\F) > f(to),
we know from Lemma 5 that A¥ > ¢y, thus Lemma 4 tells us Py, (\*) <

P, (to) = 0. So we have 4" > () from (14), this means that ij is a monotone

ds s
increasing function of s. Therefore, W(s) must be monotonic when s tends to
infinity. On the other hand, since w(s) is bounded (cf. [13]), we find that both
lims_, — oo W(s) and lim,_, 4 o W(s) exist and we have
i T gy, 906
S——00 dS s——+o00 dS

By the monotonicity of dﬁdis), we see that 42 = 0, thus w(s) is a constant.

Then, according to w(s) = |A\¥—Hj,|~# and (8), we infer that A, p are constants
on M. Therefore, we know from the results due to Cartan in [3] that M
is an isoparametric hypersurface, it is isometric to the Riemannian product
St(e1) x 8" 1(ez), where ¢1 > 0, co > 0, % + é =1

Case 2. If the assumption (2) holds in Theorem 1, i.e., S = f(\F) < f(to),
we obtain from Lemma 5 again that A\¥ < tq, thus Py, (\*) > 0 by Lemma 4.
So we have (fg < 0, this means that i—f is a monotone increasing function of
s. By the similar discussion to the Case 1, we know that A\, u are constants on
M and M is an isoparametric hypersurface, it is isometric to the Riemannian

product S*(c;) x S 1(c2). We complete the proof of Theorem 1. O
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