1 |
H.-P. Fu, G.-B. Xu, and Y.-Q. Tao, Some remarks on Bach-flat manifolds with positive constant scalar curvature, Colloq. Math. 155 (2019), no. 2, 187-196. https://doi.org/10.4064/cm7358-2-2018
DOI
|
2 |
H. Y. He and H.-P. Fu, Rigidity theorem for compact Bach-flat manifolds with positive constant σ2, arXiv:1810.06302
|
3 |
G. Huang, Rigidity of Riemannian manifolds with positive scalar curvature, Ann. Global Anal. Geom. 54 (2018), no. 2, 257-272. https://doi.org/10.1007/s10455-018-9600-x
DOI
|
4 |
G. Huang and B. Ma, Rigidity of complete Riemannian manifolds with vanishing Bach tensor, Bull. Korean Math. Soc. 56 (2019), no. 5, 1341-1353. https://doi.org/10.4134/BKMS.b181193
DOI
|
5 |
G. Huang and Q. Y. Zeng, Rigidity characterizations of Riemannian manifolds with generic linear combination of divergences of the Weyl tensor, to appear
|
6 |
G. Huisken, Ricci deformation of the metric on a Riemannian manifold, J. Differential Geom. 21 (1985), no. 1, 47-62. http://projecteuclid.org/euclid.jdg/1214439463
DOI
|
7 |
S. Kim, Rigidity of noncompact complete Bach-flat manifolds, J. Geom. Phys. 60 (2010), no. 4, 637-642. https://doi.org/10.1016/j.geomphys.2009.12.014
DOI
|
8 |
A. M. Li and G. S. Zhao, Isolation phenomena of Riemannian manifolds with parallel Ricci curvature, Acta Math. Sinica 37 (1994), no. 1, 19-24.
|
9 |
B. Ma, G. Huang, X. Li, and Y. Chen, Rigidity of Einstein metrics as critical points of quadratic curvature functionals on closed manifolds, Nonlinear Anal. 175 (2018), 237-248. https://doi.org/10.1016/j.na.2018.05.017
DOI
|
10 |
R. Schoen and S.-T. Yau, Conformally flat manifolds, Kleinian groups and scalar curvature, Invent. Math. 92 (1988), no. 1, 47-71. https://doi.org/10.1007/BF01393992
DOI
|
11 |
Y. Chu, A rigidity theorem for complete noncompact Bach-flat manifolds, J. Geom. Phys. 61 (2011), no. 2, 516-521. https://doi.org/10.1016/j.geomphys.2010.11.003
DOI
|
12 |
R. Bach, Zur Weylschen Relativitatstheorie und der Weylschen Erweiterung des Krummungstensorbegriffs, Math. Z. 9 (1921), no. 1-2, 110-135. https://doi.org/10.1007/BF01378338
DOI
|
13 |
A. L. Besse, Einstein Manifolds, reprint of the 1987 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2008.
|
14 |
H.-D. Cao and Q. Chen, On Bach-flat gradient shrinking Ricci solitons, Duke Math. J. 162 (2013), no. 6, 1149-1169. https://doi.org/10.1215/00127094-2147649
DOI
|
15 |
Y. Chu and S. Fang, Rigidity of complete manifolds with parallel Cotton tensor, Arch. Math. (Basel) 109 (2017), no. 2, 179-189. https://doi.org/10.1007/s00013-017-1047-y
DOI
|
16 |
Y. Chu and P. Feng, Rigidity of complete noncompact Bach-flat n-manifolds, J. Geom. Phys. 62 (2012), no. 11, 2227-2233. https://doi.org/10.1016/j.geomphys.2012.06.011
DOI
|
17 |
H.-P. Fu and J. Peng, Rigidity theorems for compact Bach-flat manifolds with positive constant scalar curvature, Hokkaido Math. J. 47 (2018), no. 3, 581-605. https://doi. org/10.14492/hokmj/1537948832
DOI
|
18 |
H.-P. Fu, G.-B. Xu, and Y.-Q. Tao, Some remarks on Riemannian manifolds with parallel Cotton tensor, Kodai Math. J. 42 (2019), no. 1, 64-74. https://doi.org/10. 2996/kmj/1552982506
DOI
|
19 |
H.-P. Fu and L.-Q. Xiao, Einstein manifolds with finite Lp-norm of the Weyl curvature, Differential Geom. Appl. 53 (2017), 293-305. https://doi.org/10.1016/j. difgeo.2017.07.003
DOI
|