Browse > Article
http://dx.doi.org/10.4134/JKMS.j200086

RIGIDITY CHARACTERIZATIONS OF COMPLETE RIEMANNIAN MANIFOLDS WITH α-BACH-FLAT  

Huang, Guangyue (College of Mathematics and Information Science Henan Normal University)
Zeng, Qianyu (College of Mathematics and Information Science Henan Normal University)
Publication Information
Journal of the Korean Mathematical Society / v.58, no.2, 2021 , pp. 401-418 More about this Journal
Abstract
For complete manifolds with α-Bach tensor (which is defined by (1.2)) flat, we provide some rigidity results characterized by some point-wise inequalities involving the Weyl curvature and the traceless Ricci curvature. Moveover, some Einstein metrics have also been characterized by some $L^{\frac{n}{2}}$-integral inequalities. Furthermore, we also give some rigidity characterizations for constant sectional curvature.
Keywords
${\alpha}$-Bach-flat; rigidity; Sobolev constant; Einstein;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H.-P. Fu, G.-B. Xu, and Y.-Q. Tao, Some remarks on Bach-flat manifolds with positive constant scalar curvature, Colloq. Math. 155 (2019), no. 2, 187-196. https://doi.org/10.4064/cm7358-2-2018   DOI
2 H. Y. He and H.-P. Fu, Rigidity theorem for compact Bach-flat manifolds with positive constant σ2, arXiv:1810.06302
3 G. Huang, Rigidity of Riemannian manifolds with positive scalar curvature, Ann. Global Anal. Geom. 54 (2018), no. 2, 257-272. https://doi.org/10.1007/s10455-018-9600-x   DOI
4 G. Huang and B. Ma, Rigidity of complete Riemannian manifolds with vanishing Bach tensor, Bull. Korean Math. Soc. 56 (2019), no. 5, 1341-1353. https://doi.org/10.4134/BKMS.b181193   DOI
5 G. Huang and Q. Y. Zeng, Rigidity characterizations of Riemannian manifolds with generic linear combination of divergences of the Weyl tensor, to appear
6 G. Huisken, Ricci deformation of the metric on a Riemannian manifold, J. Differential Geom. 21 (1985), no. 1, 47-62. http://projecteuclid.org/euclid.jdg/1214439463   DOI
7 S. Kim, Rigidity of noncompact complete Bach-flat manifolds, J. Geom. Phys. 60 (2010), no. 4, 637-642. https://doi.org/10.1016/j.geomphys.2009.12.014   DOI
8 A. M. Li and G. S. Zhao, Isolation phenomena of Riemannian manifolds with parallel Ricci curvature, Acta Math. Sinica 37 (1994), no. 1, 19-24.
9 B. Ma, G. Huang, X. Li, and Y. Chen, Rigidity of Einstein metrics as critical points of quadratic curvature functionals on closed manifolds, Nonlinear Anal. 175 (2018), 237-248. https://doi.org/10.1016/j.na.2018.05.017   DOI
10 R. Schoen and S.-T. Yau, Conformally flat manifolds, Kleinian groups and scalar curvature, Invent. Math. 92 (1988), no. 1, 47-71. https://doi.org/10.1007/BF01393992   DOI
11 Y. Chu, A rigidity theorem for complete noncompact Bach-flat manifolds, J. Geom. Phys. 61 (2011), no. 2, 516-521. https://doi.org/10.1016/j.geomphys.2010.11.003   DOI
12 R. Bach, Zur Weylschen Relativitatstheorie und der Weylschen Erweiterung des Krummungstensorbegriffs, Math. Z. 9 (1921), no. 1-2, 110-135. https://doi.org/10.1007/BF01378338   DOI
13 A. L. Besse, Einstein Manifolds, reprint of the 1987 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2008.
14 H.-D. Cao and Q. Chen, On Bach-flat gradient shrinking Ricci solitons, Duke Math. J. 162 (2013), no. 6, 1149-1169. https://doi.org/10.1215/00127094-2147649   DOI
15 Y. Chu and S. Fang, Rigidity of complete manifolds with parallel Cotton tensor, Arch. Math. (Basel) 109 (2017), no. 2, 179-189. https://doi.org/10.1007/s00013-017-1047-y   DOI
16 Y. Chu and P. Feng, Rigidity of complete noncompact Bach-flat n-manifolds, J. Geom. Phys. 62 (2012), no. 11, 2227-2233. https://doi.org/10.1016/j.geomphys.2012.06.011   DOI
17 H.-P. Fu and J. Peng, Rigidity theorems for compact Bach-flat manifolds with positive constant scalar curvature, Hokkaido Math. J. 47 (2018), no. 3, 581-605. https://doi. org/10.14492/hokmj/1537948832   DOI
18 H.-P. Fu, G.-B. Xu, and Y.-Q. Tao, Some remarks on Riemannian manifolds with parallel Cotton tensor, Kodai Math. J. 42 (2019), no. 1, 64-74. https://doi.org/10. 2996/kmj/1552982506   DOI
19 H.-P. Fu and L.-Q. Xiao, Einstein manifolds with finite Lp-norm of the Weyl curvature, Differential Geom. Appl. 53 (2017), 293-305. https://doi.org/10.1016/j. difgeo.2017.07.003   DOI