• Title/Summary/Keyword: constant capacitance model

Search Result 29, Processing Time 0.026 seconds

Novel Adaptive Blanking Regulation Scheme for Constant Current and Constant Voltage Primary-side Controlled Flyback Converter

  • Bai, Yongjiang;Chen, Wenjie;Yang, Xiaoyu;Yang, Xu
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1469-1479
    • /
    • 2017
  • Primary-side regulation (PSR) scheme is widely applied in low power applications, such as cell phone chargers, network adapters, and LED drivers. However, the efficiency and standby power requirements have been improved to a high standard due to the new trends of DOE (Department Of Energy) Level VI and COC (Code Of Conduct specifications) V5. The major drawbacks of PSR include poor regulation due to inaccurate feedback and difficulty in acquiring acceptable regulation. A novel adaptive blanking strategy for constant current and constant voltage regulation is proposed in this paper. An accurate model for the sample blanking time related to transformer leakage inductance and the metal-oxide-semiconductor field-effect transistor (MOSFET) parasitic capacitance is established. The proposed strategy can achieve accurate detection for ultra-low standby power. In addition, numerous control factors are analyzed in detail to eliminate the influence of leakage inductance on the loop stability. A dedicated controller integrated circuit (IC) with a power MOSFET is fabricated to verify the effectiveness of the proposed control strategy. Experimental results demonstrated that the prototype based on the proposed IC has excellent performance.

A Compact Quantum Model for Cylindrical Surrounding Gate MOSFETs using High-k Dielectrics

  • Vimala, P.;Balamurugan, N.B.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.649-654
    • /
    • 2014
  • In this paper, an analytical model for Surrounding Gate (SG) metal-oxide- semiconductor field effect transistors (MOSFETs) considering quantum effects is presented. To achieve this goal, we have used variational approach for solving the Poission and Schrodinger equations. This model is developed to provide an analytical expression for inversion charge distribution function for all regions of device operation. This expression is used to calculate the other important parameters like inversion charge density, threshold voltage, drain current and gate capacitance. The calculated expressions for the above parameters are simple and accurate. This paper also focuses on the gate tunneling issue associated with high dielectric constant. The validity of this model was checked for the devices with different dimensions and bias voltages. The calculated results are compared with the simulation results and they show good agreement.

Design and Control of the Phase Shift Full Bridge Converter for the On-board Battery Charger of Electric Forklifts

  • Kim, Tae-Hoon;Lee, Seung-Jun;Choi, Woo-Jin
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.113-119
    • /
    • 2012
  • This paper describes the design and control of a phase shift full bridge converter with a current doubler, which can be used for the on-board charger for the lead-acid battery of electric forklifts. Unlike the common resistance load, the battery has a large capacitance element and it absorbs the entire converter output ripple current, thereby shortening the battery life and degrading the system efficiency. In this paper a phase shift full bridge converter with a current doubler has been adopted to decrease the output ripple current and the transformer rating of the charger. The charge controller is designed by using the small signal model of the converter, taking into consideration the internal impedance of the battery. The stability and performance of the battery charger is then verified by constant current (CC) and constant voltage (CV) charge experiments using a lead-acid battery bank for an electric forklift.

Analytical Analysis of PT Ferroresonance in the Transient-State (과도상태에서 PT 철공진의 해석적 분석)

  • Kang, Yong-Cheol;Lee, Byung-Eun;Zheng, Tai-Ying;Kim, Yeon-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.860-865
    • /
    • 2010
  • When a circuit breaker is opened, a large capacitance around the buses, the circuit breaker and the potential transformer (PT) might cause PT ferroresonance. During PT ferroresonance, the iron core repeats saturation and unsaturation even though the supplied voltage is a rated voltage. This paper describes an analytical analysis of PT ferroresonance in the transient-state. To analyze ferroresonance analytically, the iron core is modelled by a simplified two-segment core model in this paper. Thus, a nonlinear ordinary differential equation (ODE) for the flux linkage is changed into a linear ODE with constant coefficients, which enables an analytical analysis. In this simplified model, each state, which is either saturated or unsaturated state, corresponds to one of the three modes, i.e. overdamping, critical damping and underdamping. The flux linkage and the voltage in each state are obtained analytically by solving the linear ODE with constant coefficients. The proposed transient analysis is effective in the more understanding of ferroresonance and thus can be used to design a ferroresonance prevention or suppression circuit of a PT.

Influence of Parasitic Parameters on Switching Characteristics and Layout Design Considerations of SiC MOSFETs

  • Qin, Haihong;Ma, Ceyu;Zhu, Ziyue;Yan, Yangguang
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1255-1267
    • /
    • 2018
  • Parasitic parameters have a larger influence on Silicon Carbide (SiC) devices with an increase of the switching frequency. This limits full utilization of the performance advantages of the low switching losses in high frequency applications. By combining a theoretical analysis with a experimental parametric study, a mathematic model considering the parasitic inductance and parasitic capacitance is developed for the basic switching circuit of a SiC MOSFET. The main factors affecting the switching characteristics are explored. Moreover, a fast-switching double pulse test platform is built to measure the individual influences of each parasitic parameters on the switching characteristics. In addition, guidelines are revealed through experimental results. Due to the limits of the practical layout in the high-speed switching circuits of SiC devices, the matching relations are developed and an optimized layout design method for the parasitic inductance is proposed under a constant length of the switching loop. The design criteria are concluded based on the impact of the parasitic parameters. This provides guidelines for layout design considerations of SiC-based high-speed switching circuits.

Impedance Spectroscopy Models for X5R Multilayer Ceramic Capacitors

  • Lee, Jong-Sook;Shin, Eui-Chol;Shin, Dong-Kyu;Kim, Yong;Ahn, Pyung-An;Seo, Hyun-Ho;Jo, Jung-Mo;Kim, Jee-Hoon;Kim, Gye-Rok;Kim, Young-Hun;Park, Ji-Young;Kim, Chang-Hoon;Hong, Jeong-Oh;Hur, Kang-Heon
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.5
    • /
    • pp.475-483
    • /
    • 2012
  • High capacitance X5R MLCCs based on $BaTiO_3$ ceramic dielectric layers exhibit a single broad, asymmetric arc shape impedance and modulus response over the wide frequency range between 1 MHz to 0.01 Hz. Analysis according to the conventional brick-layer model for polycrystalline conductors employing a series connection of multiple RC parallel circuits leads to parameters associated with large errors and of little physical significance. A new parametric impedance model is shown to satisfactorily describe the experimental spectra, which is a parallel network of one resistor R representing the DC conductivity thermally activated by 1.32 eV, one ideal capacitor C exactly representing bulk capacitance, and a constant phase element (CPE) Q with complex capacitance $A(i{\omega})^{{\alpha}-1}$ with ${\alpha}$ close to 2/3 and A thermally activated by 0.45 eV or ca. 1/3 of activation energy of DC conductivity. The feature strongly indicate the CK1 model by J. R. Macdonald, where the CPE with 2/3 power-law exponent represents the polarization effects originating from mobile charge carriers. The CPE term is suggested to be directly related to the trapping of the electronic charge carriers and indirectly related to the ionic defects responsible for the insulation resistance degradation.

Full Parametric Impedance Analysis of Photoelectrochemical Cells: Case of a TiO2 Photoanode

  • Nguyen, Hung Tai;Tran, Thi Lan;Nguyen, Dang Thanh;Shin, Eui-Chol;Kang, Soon-Hyung;Lee, Jong-Sook
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.3
    • /
    • pp.244-260
    • /
    • 2018
  • Issues in the electrical characterization of semiconducting photoanodes in a photoelectrochemical (PEC) cell, such as the cell geometry dependence, scan rate dependence in DC measurements, and the frequency dependence in AC measurements, are addressed, using the example of a $TiO_2$ photoanode. Contrary to conventional constant phase element (CPE) modeling, the capacitive behavior associated with Mott-Schottky (MS) response was successfully modeled by a Havriliak-Negami (HN) capacitance function-which allowed the determination of frequency-independent Schottky capacitance parameters to be explained by a trapping mechanism. Additional polarization can be successfully described by the parallel connection of a Bisquert transmission line (TL) model for the diffusion-recombination process in the nanostructured $TiO_2$ electrode. Instead of shunt CPEs generally employed for the non-ideal TL feature, TL models with ideal shunt capacitors can describe the experimental data in the presence of an infinite-length Warburg element as internal interfacial impedance - a characteristic suggested to be a generic feature of many electrochemical cells. Fully parametrized impedance spectra finally allow in-depth physicochemical interpretations.

Surface Chemical Properties of Aqueous Kaolinite and Halloysite: Surface Complexation Modeling (수용액 내 캐올리나이트와 할로이사이트의 표면화학 특성: 표면복합반응 모델링)

  • 장세정;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.157-168
    • /
    • 2004
  • The surface chemical properties of aqueous kaolinite and halloysite were studied using a potentiometric titration experiment and a computer program FITEQL3.2. Among the surface complexation models a constant capacitance model was selected for this study. The 2 sites - 3 p $K_{a}$ s model, in which the surfaces were assumed to have tetrahedral and octahedral sites, was reasonable for the description of the experimental data. The surface charges of both minerals were negative above pH of 4. The higher the pH, the lower the proton surface charge densities of both minerals. The ≡ $SiO^{[-10]}$ site played an important role in cation adsorption in acid and neutral pH range; whereas the ≡ Al $O^{[-10]}$ site was in an alkaline pH range. The optimized intrinsic constants of kaolinite, p $K_{a2(Si)}$$^{int}$, p $K_{al(Al)}$$^{int}$ and p $K_{a2(Al)}$$^{int}$ were 4.436, 4.564, and 8.461 respectively, and those of halloysite were 7.852, 3.885, and 7.084, respectively. The total Si and Al surface sites concentrations of kaolinite were 0.215 and 0.148 mM, and those of halloysite were 0.357 and 0.246 mM. The ratio of Si and Al surface site densities ([≡SiOH]:[≡AlOH]) of both minerals was 1 : 0.69. The total surface site density of kaolinite, 3.774 sites/n $m^2$, was 1.6 times larger than that of halloysite, 2.292 sites/n $m^2$./TEX>.

Extraction of Extrinsic Parameters for GaAs MESFET by S-parameters (S-파라미터를 이용한 GaAs MESFET의 외부 파라미터 추출)

  • 조영송;나극환;박광호;신철재
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.2 no.2
    • /
    • pp.30-37
    • /
    • 1991
  • The modified method which determines the extrinsic parameters at the small signal equivalent model for GaAs MESFET is presented. It is important that extrinsic parameters are completely eliminated, in order to calculate exact intrinsic parameters. Extrinsic circuit is established by transmission lines, parasitic inductors and capacitors. After these are extracted by S-parameters, intrinsic parameters are calculated. Especially, frequency dependence of parastic inductance and capacitance is considerally constant.

  • PDF

Instantaneous Voltage Control of PWM Converters Using Feedback Linearization (궤환선형화 기법을 이용한 PWM 컨버터의 순시전압 제어)

  • 이지명;이기도;이동춘
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.175-183
    • /
    • 1999
  • For fast response of the dc output voltage in P\hi1'v1 converter, it is desirable that the relation of power balance of the i input and output terminals is introduced to the system modeling. In this case, controller desi밍1 is not easy since the m model is nonlinear. In this paper, a nonlinear control them${\gamma}$ using input-output feedback linearization is used to solve t the nonlinear problem of the system. By nonlinear control. the voltage transient response can be faster, and it is also p possible to control the output voltage to be constant with smaller output filter capacitance for load disturbance.

  • PDF